Recently, interest for the potential impact of consumer-relevant engineered nanoparticles on pregnancy has dramatically increased. This study investigates whether inhaled silver nanoparticles (AgNPs) reach and cross mouse placental barrier and induce adverse effects. Apart from their relevance for the growing use in consumer products and biomedical applications, AgNPs are selected since they can be unequivocally identified in tissues. Pregnant mouse females are exposed during the first 15 days of gestation by nose-only inhalation to a freshly produced aerosol of 18-20 nm AgNPs for either 1 or 4 h, at a particle number concentration of 3.80 × 107 part./cm and at a mass concentration of 640 μg/m³. AgNPs are identified and quantitated in maternal tissues, placentas and foetuses by transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy and single-particle inductively coupled plasma mass spectrometry. Inhalation of AgNPs results in increased number of resorbed foetuses associated with reduced oestrogen plasma levels, in the 4 h/day exposed mothers. Increased expression of pregnancy-relevant inflammatory cytokines is also detected in the placentas of both groups. These results prove that NPs are able to reach and cross the mouse placenta and suggest that precaution should be taken with respect to acute exposure to nanoparticles during pregnancy.
Epidermal growth factor-like domain 7 (Egfl7) is a gene that encodes a partially secreted protein and whose expression is largely restricted to the endothelia. We recently reported that EGFL7 is also expressed by trophoblast cells in mouse and human placentas. Here, we investigated the molecular pathways that are regulated by EGFL7 in trophoblast cells. Stable EGFL7 overexpression in a Jeg3 human choriocarcinoma cell line resulted in significantly increased cell migration and invasiveness, while cell proliferation was unaffected. Analysis of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways showed that EGFL7 promotes Jeg3 cell motility by activating both pathways. We show that EGFL7 activates the epidermal growth factor receptor (EGFR) in Jeg3 cells, resulting in downstream activation of extracellular regulated kinases (ERKs). In addition, we provide evidence that EGFL7-triggered migration of Jeg3 cells involves activation of NOTCH signaling. EGFL7 and NOTCH1 are co-expressed in Jeg3 cells, and blocking of NOTCH activation abrogates enhanced migration of Jeg3 cells overexpressing EGFL7. We also demonstrate that signaling through EGFR and NOTCH converged to mediate EGFL7 effects. Reduction of endogenous EGFL7 expression in Jeg3 cells significantly decreased cell migration. We further confirmed that EGFL7 stimulates cell migration by using primary human first trimester trophoblast (PTB) cells overexpressing EGFL7. In conclusion, our data suggest that in trophoblast cells, EGFL7 regulates cell migration and invasion by activating multiple signaling pathways. Our results provide a possible explanation for the correlation between reduced expression of EGFL7 and inadequate trophoblast invasion observed in placentopathies.
A clinical association between thyroid dysfunction and pregnancy complications has been extensively reported; however, the molecular mechanisms through which TH might regulate key events of pregnancy have not been elucidated yet. In this respect, we performed studies in MMI-induced hypothyroid pregnant mice, evaluating the effect of hypothyroidism on the number of implantation sites, developing embryos/resorptions and pups per litter, at 4.5, 10.5, 18.5 days post-coitum (dpc) and at birth. We also studied the expression of major molecules involved in implantation and placentation, such as the proteases ISPs, MMPs, TIMPs and Notch pathway-related genes. Our results demonstrate that hypothyroidism may have a dual effect on pregnancy, by initially influencing implantation and by regulating placental development at later stages of gestation. To further elucidate the role of TH in implantation, we performed studies by culturing 3.5 dpc blastocysts in the presence of TH, with or without endometrial cells used as the feeder layer, and studied their ability to undergo hatching and outgrowth. We observed that, in the presence of endometrial feeder cells, TH is able to anticipate blastocyst hatching by upregulating the expression of blastocyst-produced ISPs, and to enhance blastocyst outgrowth by upregulating endometrial ISPs and MMPs. These results clearly indicate that TH is involved in the bidirectional crosstalk between the competent blastocyst and the receptive endometrium at the time of implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.