It is shown that "spontaneous magnetization" occurs when chiral oligopeptides are attached to ferrocene and are self-assembled on a gold substrate. As a result, the electron transfer, measured by electrochemistry, shows asymmetry in the reduction and oxidation rate constants; this asymmetry is reversed between the two enantiomers. The results can be explained by the chiral induced spin selectivity of the electron transfer. The measured magnetization shows high anisotropy and the "easy axis" of magnetization is along the molecular axis.
Monolayers of chiral molecules can preferentially transmit electrons with a specific spin orientation, introducing chiral molecules as efficient spin filters. This phenomenon is established as chirality-induced spin selectivity (CISS) and was demonstrated directly for the first time in self-assembled monolayers (SAMs) of double-stranded DNA (dsDNA) 1. Here, we discuss SAMs of double-stranded peptide nucleic acid (dsPNA) as a system which allows for systematic investigations of the influence of various molecular properties on CISS. In photoemission studies, SAMs of chiral, γ-modified PNA show significant spin filtering of up to P = (24.4 ± 4.3)% spin polarization. The polarization values found in PNA lacking chiral monomers are considerably lower at about P = 12%. The results confirm that the preferred spin orientation is directly linked to the molecular handedness and indicate that the spin filtering capacity of the dsPNA helices might be enhanced by introduction of chiral centers in the constituting peptide monomers.
Devices based on self-assembled hybrid colloidal quantum dots (CQDs) coupled with specific organic linker molecules are a promising way to simply realize room-temperature, spectrally tunable light detectors. Nevertheless, this type of devices usually has low quantum efficiency. Plasmonics has been shown as an efficient tool in guiding and confining light at nanoscale dimensions. As plasmonic modes exhibit highly confined fields, they locally increase light-matter interactions and consequently enhance the performance of CQD-based photodetectors. Recent publications presented experimental results of large extinction enhancement from a monolayer of CQDs coupled to random gold nanoislands using a monolayer of organic alkyl linkers. We report here that a twofold larger extinction enhancement in the visible spectrum is observed when a monolayer of helical chiral molecules connects the CQDs to the gold structure instead of a monolayer of achiral linkers. We also show that this effect provides insight into the chirality of the molecules within the monolayer. In future work, we plan to evaluate the potential of these results to be used in the construction of a more efficient and sensitive photon detector based on surface QDs, as well as to supply a simple way to map the chirality of a single chiral monolayer.
A challenging goal in nanotechnology is the precise and programmable arrangement of specific elements in nanosystems in the three-dimensional space. The use of ligand-modified nucleic acids represents an accurate and selective tool to achieve this goal when it comes to metal ion organization. The synthesis of peptide nucleic acid (PNA) monomers that contain ligands instead of nucleobases makes possible the creation of metal-mediated alternative base pairs and triplets at specific locations in PNA duplexes and triplexes, respectively. We report the formation of four- and six-coordinate metal complexes between PNA triplexes modified with 2,2'-bipyridine (Bpy) or 8-hydroxyquinoline (Q) ligands and 3d metal ions. These metal complexes function as alternative base triplets or pairs in that they increase the thermal stability of the triplexes if the stability constants of the metal complexes are relatively high. The increase in the triplex melting temperature correlates with the stability constants of the metal complexes with ligand-containing PNA determined by UV-vis titrations. The metal complexes coordinate two or three ligands although three bidentate ligands are in close proximity of each other within a triplex. Metal coordination to ligand-modified PNA triplexes was further studied by electron paramagnetic resonance (EPR) spectroscopy and circular dichrosim (CD) spectroscopy. EPR spectroscopy indicated the formation of a square planar [CuQ] complex between Cu and Q-containing PNA triplex. Taken together, the spectroscopic results indicate that in the presence of 1 equiv of Fe or Ni the majority, but not all, of the Bpy-containing PNA triplexes contain [MBpy] complexes, with a minority of them being metal free. We attribute this behavior to a supramolecular chelate effect exerted by the triplex, which favors the formation of tris-ligand complexes, that is balanced by the steric interactions between the metal complex and the adjacent nucleobase triplets, which decrease the stability of the complex and triplex. In contrast, the very high stability of square planar [MQ] complexes of Cu and Ni leads to formation of bis-ligand complexes instead of tris-ligand complexes with Q-containing PNA triplexes. The metal-containing PNA triplexes have a terminal l-lysine and adopt a left-handed chiral structure in solution. The handedness of the PNA triplex determines that of the metal complexes formed with the Bpy-containing PNA triplexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.