Chronic hepatitis B virus (HBV) infection continues to be a major health problem worldwide and remains hard to be cured. Therapy with interferon (IFN) α is an important method for the clinical treatment of chronic hepatitis B. IFNα exhibits direct antiviral effects as well as immunomodulatory activities, which can induce sustained antiviral responses in part of the treated chronic hepatitis B patients. Numerous IFNα subtypes with high sequence identity between 76-96% exist which are characterized by diverse, non-redundant biological activities. Our previous studies have demonstrated that the clinically approved IFNα2 is not the most effective subtype for the anti-HBV treatment among all IFNα subtypes. So far very little is known about the IFNα subtype expression pattern during early HBV infection and the IFNα subtype-specific susceptibility during persistent HBV infection as well as its related cellular mechanism. Here we determined the Ifna subtype mRNA expression during acute and chronic HBV infection by using the well-established hydrodynamic injection (HDI) mouse model and we revealed a transient but strong expression of a panel of Ifna subtypes in the spleen of HBV persistent replication mice compared to HDI controls. Immunotherapy with distinct IFNα subtypes controlled chronic HBV infection. IFNα subtype-mediated antiviral response and immune activation were comprehensively analyzed in an AAV-HBV persistent infection murine model and murine IFNα2 was identified as the most effective subtype in suppression of HBV replication. Further analysis of the immune response revealed a strong immunomodulatory activity of murine IFNα2 on splenic and intrahepatic NK and T cell activation during persistent HBV infection. Taken together, our data provide IFNα subtype-specific differences in the antiviral and immunomodulatory effector responses and a strong expression of all IFNα subtypes in the spleen during persistent HBV infection in mice. This knowledge will support the development of novel immunotherapeutic strategies for chronic hepatitis B infection.
Chronic hepatitis B virus (HBV) infection continues to be a global public health burden. B cells play a pivotal role in mediating HBV clearance and can participate in the development of anti-HBV adaptive immune responses through multiple mechanisms, such as antibody production, antigen presentation, and immune regulation. However, B cell phenotypic and functional disorders are frequently observed during chronic HBV infection, suggesting the necessity of targeting the disordered anti-HBV B cell responses to design and test new immune therapeutic strategies for the treatment of chronic HBV infection. In this review, we provide a comprehensive summary of the multiple roles of B cells in mediating HBV clearance and pathogenesis as well as the latest developments in understanding the immune dysfunction of B cells in chronic HBV infection. Additionally, we discuss novel immune therapeutic strategies that aim to enhance anti-HBV B cell responses for curing chronic HBV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.