The -proteobacterial strain ULPAs1, isolated from an arsenic-contaminated environment, is able to efficiently oxidize arsenite [As(III)] to arsenate [As(V)]. Mutagenesis with a lacZ-based reporter transposon yielded two knockout derivatives deficient in arsenite oxidation. Sequence analysis of the DNA flanking the transposon insertions in the two mutants identified two adjacent open reading frames, named aoxA and aoxB, as well as a putative promoter upstream of the aoxA gene. Reverse transcription-PCR data indicated that these genes are organized in an operonic structure. The proteins encoded by aoxA and aoxB share 64 and 72% identity with the small Rieske subunit and the large subunit of the purified and crystallized arsenite oxidase of Alcaligenes faecalis, respectively (P. J. Ellis, T. Conrads, R. Hille, and P. Kuhn, Structure [Cambridge] 9:125-132, 2001). Importantly, almost all amino acids involved in cofactor interactions in both subunits of the A. faecalis enzyme were conserved in the corresponding sequences of strain ULPAs1. An additional Tat (twin-arginine translocation) signal peptide sequence was detected at the N terminus of the protein encoded by aoxA, strongly suggesting that the Tat pathway is involved in the translocation of the arsenite oxidase to its known periplasmic location.Arsenic is present in various environments, is released either by natural weathering of rocks or by anthropogenic sources (e.g., mining industries and agricultural practices), and is found in the oxidation states ϩ5 (arsenate), ϩ3 (arsenite), 0 (elemental arsenic), and Ϫ3 (arsine). Contamination of drinkingwater supplies with the inorganic soluble forms arsenite and arsenate has often been reported, and arsenic has been identified as a major risk for human health in different parts of the world (northeast India, Bangladesh, northwest United States) (31). The biogeochemical cycle of this element strongly depends on microbial transformation, which affects the mobility and the distribution of arsenic species in the environment (33, 41). Several bacteria involved in transformation processes comprising reduction, oxidation, and methylation of arsenic species have been described (8,11,26,36,40).The toxicological effects of arsenic are related to its chemical form and oxidation state; the organic forms are the less toxic. Among inorganic forms, As(III) is reported to be on average 100 times more toxic than the less mobile As(V) (25). Several remediation processes have been described for arsenic removal (19) based on chemical oxidation of arsenite to arsenate followed by alkaline precipitation (5, 15-17, 24). The major drawbacks of these processes are that they generate additional pollution and are expensive. This has led to the exploration of alternative methods for arsenic remediation based on its biological oxidation. Several arsenite-oxidizing bacteria have been isolated, starting with an Achromobacter strain in 1918 (14). Since then, different arsenite-oxidizing bacteria, including several Pseudomonas strains (18, 42-44), A...
Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments—including ground and surface waters—from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the β-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.