To date, there is limited knowledge on the topic of unsteady nonlinear transonic flow caused by large-amplitude excitations. The Certification Specifications for Large Aeroplanes, however, demand loads computations for large-amplitude excitations, e.g., for gust encounters of an aircraft. In this paper, numerical solutions to the unsteady Reynolds-averaged Navier–Stokes equations will be used to analyze gust responses of a transport aircraft configuration for a variety of sinusoidal gusts with different lengths and amplitudes at different Mach numbers. On the one hand, it is shown that unsteady nonlinear responses can lead to lower maximum lift values compared to their time-linearized reference due to unsteady shock-induced flow separation. This nonlinear effect dominates for large gust lengths and higher Mach numbers. On the other hand, for the lowest Mach number considered, the coalescence of a double shock at medium gust lengths introduces nonlinear effects leading to an overprediction of the time-linearized maximum lift by the nonlinear computations. Though the turbulence model of Spalart and Allmaras shows completely different separation patterns than a differential Reynolds stress model, the variation of the turbulence model does not alter the overall qualitative findings, but has an effect on the quantitative values.
Large-amplitude excitations need to be considered for gust load analyses of transport aircraft in cruise flight conditions. Nonlinear amplitude effects in transonic flow are, however, only marginally taken into account. The present work aims at closing this gap by means of systematic unsteady Reynolds-averaged Navier-Stokes simulations. The RAE2822 airfoil is analyzed for a variety of sinusoidal gust excitations at different transonic Mach numbers. Responses are evaluated with respect to lift and moment coefficients, their derivatives and the unsteady shock motion. A strong dependency on inflow Mach number and excitation frequency is observed. Generally, amplitude effects decrease with lower Mach numbers or higher excitation frequencies. The unsteady nonlinear simulations predict lower maximum lift values and lower lift and moment derivatives compared to their linear counterparts for lower frequencies in combination with large-amplitude excitations. For the mid-frequency range, trends are not as clear. Additionally, it is shown that the variables of harmonic distortion and maximum shock motion might not be reasonable indicators to predict a nonlinear response.
Your article is protected by copyright and all rights are held exclusively by Deutsches Zentrum für Luft-und Raumfahrt e.V.. This eoffprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.