Background: The modern society is extremely prone to many life-threatening diseases, which can be easily controlled as well as cured if diagnosed at an early stage. The development and implementation of a disease diagnostic system have gained huge popularity over the years. In the current scenario, there are certain factors such as environment, sedentary lifestyle, genetic (hereditary) are the major factors behind the life threatening disease such as, ‘diabetes’. Moreover, diabetes has achieved the status of the modern man’s leading chronic disease. So one of the prime need of this generation is to develop a state-of-the-art expert system which can predict diabetes at a very early stage with a minimum of complexity and in an expedited manner. The primary objective of this research work is to develop an indigenous and efficient diagnostic technique for detection of the diabetes. Method & Discussion: The proposed methodology comprises of two phases: In the first phase The Pima Indian Diabetes Dataset (PIDD) has been collected from the UCI machine learning repository databases and Localized Diabetes Dataset (LDD) has been gathered from Bombay Medical Hall, Upper Bazar Ranchi, Jharkhand, India. In the second phase, the dataset has been processed through two different approaches. The first approach entails classification through Adaboost, Classification Via Regression (CVR), Radial Basis Function Network (RBFN), K-Nearest Neighbor (KNN) on Pima Indian Diabetes Dataset and Localized Diabetes Dataset. In the second approach, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) have been applied as a feature reduction method followed by using the same set of classification methods used in the first approach. Among all of the implemented classification method, PCA_CVR performs the highest performance for both the above mentioned dataset. Conclusion: In this research article, comparative analysis of outcomes obtained by with and without the use of PCA and LDA for the same set of classification method has been done w.r.t performance assessment. Finally, it has been concluded that PCA & LDA both is useful to remove the insignificant features, decreasing the expense and computation time while improving the ROC and accuracy. The used methodology may similarly be applied in other medical diseases.
Abstract-Diabetes is a condition in which the amount of sugar in the blood is higher than normal. Classification systems have been widely used in medical domain to explore patient's data and extract a predictive model or set of rules. The prime objective of this research work is to facilitate a better diagnosis (classification) of diabetes disease. There are already several methodology which have been implemented on classification for the diabetes disease. The proposed methodology implemented work in 2 stages: (a) In the first stage Genetic Algorithm (GA) has been used as a feature selection on Pima Indian Diabetes Dataset. (b) In the second stage, Multilayer Perceptron Neural Network (MLP NN) has been used for the classification on the selected feature. GA is noted to reduce not only the cost and computation time of the diagnostic process, but the proposed approach also improved the accuracy of classification. The experimental results obtained classification accuracy (79.1304%) and ROC (0.842) show that GA and MLP NN can be successfully used for the diagnosing of diabetes disease.
Abstract:The modern society is prone to many life-threatening diseases, which if diagnosed early, can be easily controlled. The implementation of a disease diagnostic system has gained popularity over the years. The main aim of this research is to provide a better diagnosis of diabetes disease. There are already several existing methods, which have been implemented for the diagnosis of diabetes dataset. Here, the proposed approach consists of two stages: in first stage Genetic algorithm (GA) used as an attribute (feature) selection which reduces 4 attributes among 8 attributes, and in the second stage Radial Basis Function Neural Network (RBF NN) has been used for classification on selected attributes among all the attributes. The experimental results show the performance of the proposed methodology on Pima Indian Diabetes Dataset (PIDD) and provide better classification for diagnosis of diabetes patients on PIDD. GA is removing insignificant features, reducing the cost and computation time and improving the accuracy, ROC of classification. The proposed method can also be used for other kinds of medical diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.