Social media are the main contributors to spreading fake images. Fake images are manipulated images altered through software or by other means to change the information they convey. Fake images propagated over microblogging platforms generate misrepresentation and stimulate polarization in the people. Detection of fake images shared over social platforms is extremely critical to mitigating its spread. Fake images are often associated with textual data. Hence, a multi-modal framework is employed utilizing visual and textual feature learning. However, few multi-modal frameworks are already proposed; they are further dependent on additional tasks to learn the correlation between modalities. In this paper, an efficient multi-modal approach is proposed, which detects fake images of microblogging platforms. No further additional subcomponents are required. The proposed framework utilizes explicit convolution neural network model EfficientNetB0 for images and sentence transformer for text analysis. The feature embedding from visual and text is passed through dense layers and later fused to predict fake images. To validate the effectiveness, the proposed model is tested upon a publicly available microblogging dataset, MediaEval (Twitter) and Weibo, where the accuracy prediction of 85.3% and 81.2% is observed, respectively. The model is also verified against the newly created latest Twitter dataset containing images based on India's significant events in 2020. The experimental results illustrate that the proposed model performs better than other state-of-art multi-modal frameworks.
Machine learning (ML) architectures based on neural model have garnered considerable attention in the field of language classification. Code-mixing is a common phenomenon on social networking sites for exhibiting opinion on a topic. The code-mixed text is the approach of mixing two or more languages. This paper describes the application of the code-mixed index in Indian social media texts and compares the complexity to identify language at the word level using Bi-directional Long Short-Term Memory model. The major contribution of the work is to propose a technique for identifying the language of Hindi–English code-mixed data used in three social media platforms namely, Facebook, Twitter and WhatsApp. Here, we demonstrate that a special class of quantum LSTM network model is capable of learning and accurately predicting the languages used in social media texts. Our work paves the way for future applications of machine learning methods in quantum dynamics without relying on the explicit form of the Hamiltonian.
Spotting fake news is a critical problem nowadays. Social media are responsible for propagating fake news. Fake news propagated over digital platforms generates confusion as well as induce biased perspectives in people. Detection of misinformation over the digital platform is essential to mitigate its adverse impact. Many approaches have been implemented in recent years. Despite the productive work, fake news identification poses many challenges due to the lack of a comprehensive publicly available benchmark dataset. There is no large-scale dataset that consists of Indian news only. So, this paper presents IFND (Indian fake news dataset) dataset. The dataset consists of both text and images. The majority of the content in the dataset is about events from the year 2013 to the year 2021. Dataset content is scrapped using the Parsehub tool. To increase the size of the fake news in the dataset, an intelligent augmentation algorithm is used. An intelligent augmentation algorithm generates meaningful fake news statements. The latent Dirichlet allocation (LDA) technique is employed for topic modelling to assign the categories to news statements. Various machine learning and deep-learning classifiers are implemented on text and image modality to observe the proposed IFND dataset's performance. A multi-modal approach is also proposed, which considers both textual and visual features for fake news detection. The proposed IFND dataset achieved satisfactory results. This study affirms that the accessibility of such a huge dataset can actuate research in this laborious exploration issue and lead to better prediction models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.