Studies of suites of correlated behavioral traits (i.e., behavioral syndromes) aid in understanding the adaptive importance of behavioral evolution. Behavioral syndromes may be evolutionarily constrained, preventing behaviors from evolving independently, or they may be an adaptive result of selection on the correlation itself. We tested these hypotheses by characterizing the behavioral syndromes in two sympatric, closely related species and testing for differences between the species. We studied the unisexual Amazon molly (Poecilia formosa) and one of its bisexual, parent species, the sailfin molly (P. latipinna). Sympatric female sailfin and Amazon mollies compete for mating which could affect the behavioral syndromes found in each species. We identified a behavioral syndrome between exploration and activity in both species that did not differ between species. Additionally, we explored the relationship between a stress response hormone, cortisol, and behavioral type, and did not detect a relationship. However, P. formosa differed from P. latipinna in their cortisol release rates. Behavioral syndromes may be constrained in this complex, aiding in mate acquisition for P. formosa by virtue of having a similar behavioral type to P. latipinna. The difference between the females in cortisol release rates may be a useful mate identification cue for males to offset higher mating mistakes associated with the similar behavioral types.
Anthropogenic environmental change, including climate change and urbanization, results in warmer temperatures in both terrestrial and aquatic habitats and changes in community assemblages including invasive species introductions, among many other alterations. Anurans are particularly susceptible to these changes because generally they have a biphasic lifecycle and rely on aquatic and terrestrial habitats for survival. Changes such as warmer water temperature can result in direct and carryover effects, after metamorphosis that decrease fitness. However, Gulf Coast toads (Incilius (Bufo) nebulifer) are expanding their range, including into anthropogenically disturbed areas. We hypothesize that I. nebulifer copes with warmer water, reduced water levels, and invasive species by altering their physiology and/or behavior. Corticosterone is the primary glucocorticoid in amphibians, and it modulates many aspects of physiology and behavior, potentially including lipid storage and hop performance, during unpredictable (stressful) events. As a true toad, I. nebulifer also produces bufadienolide toxins that aid in its antipredator defense and may have tradeoffs with corticosterone. In a fully factorial design, we measured baseline corticosterone levels in tadpoles in response to two treatments: decreased water levels and increased water temperatures. After metamorphosis, we measured the corticosterone profile and other associated responses to exposure to the predatory red imported fire ant (Solenopsis invicta; RIFA). We found that tadpoles had elevated baseline corticosterone release rates when reared in warmer water and reduced water levels. Toadlets also had elevated baseline corticosterone release rates when exposed to any combination of two of the three treatments but when exposed to all three treatments toadlets instead showed elevated magnitude of their stress response. Predator avoidance (as measured by hop performance) was reduced after exposure to RIFA. Tadpoles from warmer water developed more quickly and were smaller in mass after metamorphosis. Toadlets had reduced production of two of the three detected bufadienolides and increased energy storage (lipids) after exposure to warmer water and reduced growth after exposure to reduced water levels. We found direct and carryover effects of common anthropogenic changes in I. nebulifer that may aid in their ability to persist despite these changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.