Tau is a microtubule-associated
protein that regulates the stability
of microtubules. We use metainference cryoelectron microscopy, an
integrative structural biology approach, to determine an ensemble
of conformations representing the structure and dynamics of a tau-microtubule
complex comprising the entire microtubule-binding region of tau (residues
202–395). We thus identify the ground state of the complex
and a series of excited states of lower populations. A comparison
of the interactions in these different states reveals positions along
the tau sequence that are important to determine the overall stability
of the tau-microtubule complex. This analysis leads to the identification
of positions where phosphorylation and acetylation events have destabilizing
effects, which we validate by using site-specific post-translationally
modified tau variants obtained by chemical mutagenesis. Taken together,
these results illustrate how the simultaneous determination of ground
and excited states of macromolecular complexes reveals functional
and regulatory mechanisms.
The aggregation of the 37-amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β-islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on-path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full-length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full-length IAPP.
The molecular composition
of the plasma membrane plays a key role
in mediating the susceptibility of cells to perturbations induced
by toxic molecules. The pharmacological regulation of the properties
of the cell membrane has therefore the potential to enhance cellular
resilience to a wide variety of chemical and biological compounds.
In this study, we investigate the ability of claramine, a blood–brain
barrier permeable small molecule in the aminosterol class, to neutralize
the toxicity of acute biological threat agents, including melittin
from honeybee venom and α-hemolysin from
Staphylococcus
aureus
. Our results show that claramine neutralizes
the toxicity of these pore-forming agents by preventing their interactions
with cell membranes without perturbing their structures in a detectable
manner. We thus demonstrate that the exogenous administration of an
aminosterol can tune the properties of lipid membranes and protect
cells from diverse biotoxins, including not just misfolded protein
oligomers as previously shown but also biological protein-based toxins.
Our results indicate that the investigation of regulators of the physicochemical
properties of cell membranes offers novel opportunities to develop
countermeasures against an extensive set of cytotoxic effects associated
with cell membrane disruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.