The aim of the study was in vitro assessment of shear bond strength and micro-leakage after application of total-etch and self-etch adhesive systems.Materials and Methods: Four adhesive systems were chosen for assessment of adhesion performance: Contax (DMG, GmbH), Bond Force (Tokuyama Dental Corp. Japan Mfr), Te-Econom Bond (Ivoclar Vivadent, Liechtenstein) and Swisstec SL Bond (Coltene, Switzerland). The assessment of bond strength was performed on 20 tooth samples, which were prepared in accordance with the UltraTest technique for shear bond strength (SBS) estimation. The test was conducted at a crosshead speed of 1.0 mm/min and results were fixed in kilograms. The assessment of SBS was performed on enamel and dentin separately. Microleakage assessment of self-etch and total-etch adhesive systems was performed on 20 extracted non-carious upper human premolars with immersion in 1% methylene blue solution after thermocycling.Results: Good SBS results and microleakage values on the dentin substrate were obtained after application of the Contax self-etch bonding agent. But the values of bond strength to enamel and the extent of dye penetration within the composite-enamel interface were still better with the total-etch approach. (Int J Biomed. 2016; 6(4):283-286.)
Background: The aim of this research was to study the effect of air-abrasive treatment of dentin on the chemical composition of its surface and the adhesion strength of 2 self-etching adhesive systems (AS). Methods and Results: Powders based on aluminum oxide (Al2O3) (27µm) (KaVo, Biberach, Germany), sodium bicarbonate (NaHCO3) (40µm) (AIR-FlOW Classic Comfort, EMS, Nyon, Switzerland), and erythritol (14µm) (AIR-FLOW Plus, EMS, Nyon, Switzerland) were used for the air-abrasive treatment of adhesive surfaces. Bonding steps were carried out with Single Bond Universal (SBU) (3M ESPE, USA) and Bond Force 2 (BF2) (Toquyama, Japan). The adhesion strength of composite to dentin was evaluated on 80 samples prepared in accordance with the Ultradent Shear Bond Strength test. All samples were divided into 4 groups depending on the method of dentin surface processing. In the samples of Group 1 (n=20), aluminum oxide was used for the air-abrasive treatment of dentin. In Group 2 (n=20) and Group 3 (n=20), samples were treated using powders based on sodium bicarbonate and erythritol, respectively. Group 4 (control, n=20) included tooth samples in which the dentin surface was not air-abraded after preparation with carbide burs. Then, each group was divided into 2 subgroups (Sub-A and Sub-B) depending on the type of adhesive system used. Adhesive resin was applied and polymerized in accordance with the manufacturer’s instructions. Single Bond Universal (SBU) was used for the samples of Sub-A, and Bond Force 2 (BF2) (Toquyama, Japan) was used for the samples of Sub-B. Scanning electron microscopy and determining the surface elemental composition of samples were carried out on an SEM-EVO MA 10 (Carl Zeiss) and energy dispersive X-ray spectrometer with EDS Aztec Energy Advanced X-Act (Oxford Instruments). It was concluded that air-abrasive treatment of the dentin surface does not enhance the adhesion strength of composite material when using self-etch AS. Also, it was noted that the pH level of self-etch AS is not a crucial feature in determining the strength of the filling-tooth interface. The resulting variations in the elemental composition of dentin surface after air-abrasion with various mixtures and their effect on the efficacy of the different AS require further in vitro studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.