The real-time monitoring of neurochemical release in vivo plays a critical role in understanding the biochemical process of the complex nervous system. Current technologies for such applications, including microdialysis and fast-scan cyclic voltammetry, suffer from limited spatiotemporal resolution or poor selectivity. Here, we report a soft implantable aptamer-graphene microtransistor probe for real-time monitoring of neurochemical release. As a demonstration, we show the monitoring of dopamine with nearly cellular-scale spatial resolution, high selectivity (dopamine sensor >19-fold over norepinephrine), and picomolar sensitivity, simultaneously. Systematic benchtop evaluations, ex vivo experiments, and in vivo studies in mice models highlight the key features and demonstrate the capability of capturing the dopamine release dynamics evoked by pharmacological stimulation, suggesting the potential applications in basic neuroscience studies and studying neurological disease-related processes. The developed system can be easily adapted for monitoring other neurochemicals and drugs by simply replacing the aptamers functionalized on the graphene microtransistors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.