A construction system with high sustainability, high durability, and appropriate strength can be supplied by geopolymer concrete (GPC) reinforced with glass fibre-reinforced polymer (GFRP) bars and carbon fibre-reinforced polymer (CFRP) bars. Few studies deal with a combination of GPC and FRP bars, especially CFRP bars. The present investigation presents the flexural capacity and behaviour of fly-ash-based GPC beam reinforced with two different types of FRP bars: six reinforced geopolymer concrete (RGPC) beams consisting of three specimens reinforced with GFRP bars and the rest with CFRP bars. The beams were tested under four-point bending with a clear span of 2000 mm. The test parameters included the longitudinal-reinforcement ratio and the longitudinal-reinforcement type, including GFRP and CFRP. Ultimate load, first crack load, load-deflection behaviour, load-strain curve, crack width, and the modes of failure were studied. The experimental results were compared with the equations recommended by ACI 440.1R-15 and CSA S806-12 for flexural strength and midspan deflection of the beams. The results show that the reinforcement ratio had a significant effect on the ultimate load capacity and failure mode. The ultimate load capacity of CFRP-RGPC beams was higher than that of GFRP-RGPC, more crack formations were observed in the CFRP-RGPC beams than in the GFRP-RGPC beams, and the crack width in the GFRP-RGPC beams was more extensive than that in the CFRP-RGPC beams. Beams with lower reinforcement ratios experienced a fewer number of crack and a higher value of crack width, while numerous cracks and less value of crack width were observed in beams with higher reinforcement ratio. Beams with the lower reinforcement ratios were more affected by the type of FRP bars, and the deflection in GFRP-RGPC beams was higher than that in CFRP-RGPC beams for the same corresponding load level. ACI 440.1R-15 and CSA S806-12 underestimated the flexural strength and midspan deflection of RGPC beams; however, CSA S806-12 predicted more accurately.
Geopolymer concrete (GPC) with Glass fibre-reinforced polymer (GFRP) bars can provide a better construction system with high sustainability, high durability, and adequate strength. Few studies deal with the combination of these materials. The present investigation obtains the flexural capacity and behaviour of GPC and ordinary Portland concrete beams reinforced with GFRP bars (GFRP-RGPC and GFRP-ROPC, respectively). Twelve beams consisting of nine GFRP-RGPC and three GFRP-ROPC beams were cast and tested by using the four-point bending test over an active span of 2000 mm. Rebar ratio, compressive strength, and concrete types were taken as the variables. Initial cracking load, ultimate load capacity, load–deflection behaviour, Load–strain curves, crack width, the number of cracks and failure modes, were studied. Experimental results of beams were compared with the proposed equations provided by ACI 440.1R-15, CSA S806-12, and parabolic stress block method. The Results showed the decrease of deflection and increase of first cracking load by increasing the compressive strength. A slight increase in the deflection of GFRP-RGPC beams and approximately the same value of ultimate load were observed. GFRP-RGPC beams also recorded a higher value of crack width compared with GFRP-ROPC beams. The parabolic stress block method predicted the flexural capacity of the beams close to the experimental results rather than ACI 440.1R-15 and CSA S806-12.
This paper dealt with the statistical analysis to find the best fit equation predicts compressive strength of geopolymer concrete (GPC) from mixture proportion, where the compressive strength is one of the desired and required properties of hardened concrete. The main concept of finding the equation is derived from the Feret Model, all the factors that effects on the compressive strength of geopolymer concrete and related to the ingredient materials are listed. A regression analysis has been done to new model to find the empirical constant of the best fit equation with a highest coefficient of determination 0.943 and lowest loss function expressed by residual mean squares. Statistical analysis showed that the new model is applicable to geopolymer concrete. The developed equation was validated with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.