Specific antibody reactivities are routinely used as biomarkers, but the antibody repertoire reactivity (igome) profiles are still neglected. Here, we propose rationally designed peptide arrays as efficient probes for these system level biomarkers. Most IgM antibodies are characterized by few somatic mutations, polyspecificity, and physiological autoreactivity with housekeeping function. Previously, probing this repertoire with a set of immunodominant self-proteins provided a coarse analysis of the respective repertoire profiles. In contrast, here, we describe the generation of a peptide mimotope library that reflects the common IgM repertoire of 10,000 healthy donors. In addition, an appropriately sized subset of this quasi-complete mimotope library was further designed as a potential diagnostic tool. A 7-mer random peptide phage display library was panned on pooled human IgM. Next-generation sequencing of the selected phage yielded 224,087 sequences, which clustered in 790 sequence clusters. A set of 594 mimotopes, representative of the most significant sequence clusters, was shown to probe symmetrically the space of IgM reactivities in patients' sera. This set of mimotopes can be easily scaled including a greater proportion of the mimotope library. The trade-off between the array size and the resolution can be explored while preserving the symmetric sampling of the mimotope sequence and reactivity spaces. BLAST search of the non-redundant protein database with the mimotopes sequences yielded significantly more immunoglobulin J region hits than random peptides, indicating a considerable idiotypic connectivity of the targeted igome. The proof of principle predictors for random diagnoses was represented by profiles of mimotopes. The number of potential reactivity profiles that can be extracted from this library is estimated at more than 1070. Thus, a quasi-complete IgM mimotope library and a scalable representative subset thereof are found to address very efficiently the dynamic diversity of the human public IgM repertoire, providing informationally dense and structurally interpretable IgM reactivity profiles.
In the present study the toxicological potential of a tumor-inhibiting dinuclear platinum(II) complex (bis(acetato)diammine-bis-micro-acetato diplatinum(II) dihydrate (BAP)) was evaluated, utilizing in vitro models of nephrotoxicity, myelosuppression and neurotoxicity. Regarding the discrepancies between the hallmark toxicity of the clinically utilized platinum drugs, we used three distinct referent compounds as follows cisplatin for the assessment of in vitro nephrotoxicity, carboplatin in case of cultured bone marrow cells and oxaliplatin for the determination of the in vitro neurotoxicty, respectively. The results obtained indicate that the investigated dinuclear complex is endowed by a lower potential to induce detrimental effects upon these typically susceptible platinum toxicity cellular populations as compared to the corresponding referent drugs. These findings, together with the previously encountered profound cytotoxic efficiency of this dinuclear platinum(II) complex against human tumor cell lines, recall for a further detailed evaluation of BAP as potential antineoplastic agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.