Airway smooth muscle (ASM) is a potential source of multiple proinflammatory cytokines during airway inflammation. In the present study, we examined a requirement for mitogen-activated protein (MAP) kinase activation for interleukin (IL)-1beta-stimulated GM-CSF, RANTES, and eotaxin release. IL-1beta induced concentration-dependent phosphorylation of p42/p44 extracellular signal-regulated kinases (ERKs), p38 MAP kinase, and c-Jun amino-terminal kinase (SAPK/JNK). p42/p44 ERK and p38 MAP kinase phosphorylation peaked at 15 min and remained elevated up to 4 h. SAPK/JNK phosphorylation also peaked at 15 min but fell to baseline within 60 min. SB 203580 selectively inhibited IL-1beta-stimulated activation of p38 MAP kinase; U 0126 was selective against p42/p44 ERK activity. SB 202474, an inactive analog, had no effect on p42/p44 ERK, p38 MAP kinase, or SAPK/JNK activation, or on eotaxin or RANTES release. Eotaxin release was inhibited by SB 203580 and U 0126, whereas RANTES release was prevented by U 0126 only. GM-CSF release was inhibited by U 0126 but enhanced by SB 203580. These data indicate that RANTES release is dependent on p42/p44 ERK activation but occurs independently of p38 MAP kinase activity. Eotaxin release, however, is dependent on both p38 MAP kinase- and p42/p44 ERK-dependent mechanisms. GM-CSF release is p42/p44 ERK dependent and is tonically suppressed by a mechanism that is partially dependent on p38 MAP kinase, though direct inhibition of cyclooxygenase (COX) activity due to poor inhibitor selectivity may also contribute.
Altered airway smooth muscle (ASM) function and enrichment of the extracellular matrix (ECM) with interstitial collagen and fibronectin are major pathological features of airway remodeling in asthma. We have previously shown that these ECM components confer enhanced ASM proliferation in vitro, but their action on its newly characterized secretory function is unknown. Here, we examined the effects of fibronectin and collagen types I, III, and V on IL-1β-dependent secretory responses of human ASM cells, and characterized the involvement of specific integrins. Cytokine production (eotaxin, RANTES, and GM-CSF) was evaluated by ELISA, RT-PCR, and flow cytometry. Function-blocking integrin mAbs and RGD (Arg-Gly-Asp)-blocking peptides were used to identify integrin involvement. IL-1β-dependent release of eotaxin, RANTES, and GM-CSF was enhanced by fibronectin and by fibrillar and monomeric type I collagen, with similar changes in mRNA abundance. Collagen types III and V had no effect on eotaxin or RANTES release but did modulate GM-CSF. Analogous changes in intracellular cytokine accumulation were found, but in <25% of the total ASM cell population. Function-blocking Ab and RGD peptide studies revealed that α2β1, α5β1, αvβ1, and αvβ3 integrins were required for up-regulation of IL-1β-dependent ASM secretory responses by fibronectin, while α2β1 was an important transducer for type I collagen. Thus, fibronectin and type I collagen enhance IL-1β-dependent ASM secretory responses through a β1 integrin-dependent mechanism. Enhancement of cytokine release from ASM by these ECM components may contribute to airway wall inflammation and remodeling in asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.