Brain-computer interface (BCI) usually uses Electroencephalogram (EEG) signals as an intermediate device to drive external devices directly from the brain. The development of BCI capabilities is carried out by involving multivariable EEG signals as movement commands. EEG signals are recorded using multi-channel, enriching information if it uses the suitable method and architecture. This research proposed a two-dimensional convolutional neural networks (CNN) method to recognize multi-channel EEG signals. The vertical dimension is the channel, while the horizontal is the signal sequence. Hence, the signal is connected with the information time series of the same channel and between channels simultaneously. BCI was arranged with multivariable signals, specifically motor imagery and emotion. Both variables have different characteristics, and the information is from different channels. Therefore, it needs multiple CNNs to recognize the two variables in the EEG signal. The experiment showed that the accuracy of multiple 2D-CNN increased to 94.62% compared to 85.44% of single 2D CNN. Multiple 2D-CNN gave accuracy from 82.04% to 94.62% more than multiple 1D-CNN. 2D-CNN makes the channel extraction perfect into vectors to maintain the signal sequence. Signal extraction is essential, so the used Wavelet filter upgraded accuracy from 73.75% to 94.62%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.