Mesenchymal stem cells (MSCs) have been described as being able to give rise to several quite different mesenchymal cell phenotypes. However, the ability to differentiate is not the only characteristic that makes these cells attractive for therapeutic purposes. The secretion of a broad range of bioactive molecules by MSCs, such as growth factors, cytokines and chemokines, constitutes their most biologically significant role under injury conditions. Understanding this intricate secretory activity as well as the properties of MSCs in vivo is central to harnessing their clinical potential. Herein, we identify some of the molecules involved in the paracrine effects of MSCs with a perspective that these cells intrinsically belong to a perivascular niche in vivo, and discuss how this knowledge could be advantageously used in clinical applications.
Multipotent mesenchymal stromal cells (MSC) have been widely explored for cell-based therapy of immune-mediated, inflammatory, and degenerative diseases, due to their immunosuppressive, immunomodulatory, and regenerative potentials. Preclinical studies and clinical trials have demonstrated promising therapeutic results although these have been somewhat limited. Aspects such as low in vivo MSC survival in inhospitable disease microenvironments, requirements for ex vivo cell overexpansion prior to infusions, intrinsic differences between MSC and different sources and donors, variability of culturing protocols, and potency assays to evaluate MSC products have been described as limitations in the field. In recent years, priming approaches to empower MSC have been investigated, thereby generating cellular products with improved potential for different clinical applications. Herein, we review the current priming approaches that aim to increase MSC therapeutic efficacy. Priming with cytokines and growth factors, hypoxia, pharmacological drugs, biomaterials, and different culture conditions, as well as other diverse molecules, are revised from current and future perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.