A packed bed reactor with orifice plates (PBR@OP) was designed by adding orifice plates periodically in packed beds. Hydrodynamics and droplet size distribution in PBR@OP were experimentally investigated using fatty acid methyl esters (FAME)/water as the model liquid–liquid system. In PBR@OP, the flow pattern was close to plug flow. Droplets with Sauter mean diameter (d32) of 150–550 μm were generated. The pressure drop of orifice, flow velocity and plate spacing were key parameters to control the droplet size. The reactor performance was evaluated by analyzing a FAME epoxidation process. At the same d32 and residence time, the length and total pressure drop of PBR@OP were about 1/3 and 1/4 of those of PBR without orifice plates, respectively. Furthermore, a semi‐empirical correlation describing the d32 change in PBR@OP was developed, revealing a relative mean deviation of 8.64%. PBR@OP presents a cost‐effective option for the intensification of liquid–liquid medium rate reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.