The human microbiome is largely shaped by the chemical interactions of its microbial members, which includes cross-talk via shared signals or quenching of the signalling of other species. Quorum sensing is a process that allows microbes to coordinate their behaviour in dependence of their population density and to adjust gene expression accordingly. We present the Quorum Sensing Database (QSDB), a comprehensive database of all published sensing and quenching relations between organisms and signalling molecules of the human microbiome, as well as an interactive web interface that allows browsing the database, provides graphical depictions of sensing mechanisms as Systems Biology Graphical Notation diagrams and links to other databases. Database URL : QSDB (Quorum Sensing DataBase) is freely available via an interactive web interface and as a downloadable csv file at http://qsdb.org .
Spatially resolved transcriptomics is an emerging class of high-throughput technologies that enable biologists to systematically investigate the expression of genes along with spatial information. Upon data acquisition, one major hurdle is the subsequent interpretation and visualization of the datasets acquired. To address this challenge, VR-Cardiomicsis presented, which is a novel data visualization system with interactive functionalities designed to help biologists interpret spatially resolved transcriptomic datasets. By implementing the system in two separate immersive environments, fish tank virtual reality (FTVR) and head-mounted display virtual reality (HMD-VR), biologists can interact with the data in novel ways not previously possible, such as visually exploring the gene expression patterns of an organ, and comparing genes based on their 3D expression profiles. Further, a biologist-driven use-case is presented, in which immersive environments facilitate biologists to explore and compare the heart expression profiles of different genes.
Biological networks can be large and complex, often consisting of different sub-networks or parts. Separation of networks into parts, network partitioning and layouts of overview and sub-graphs are of importance for understandable visualisations of those networks. This article presents NetPartVis to visualise non-overlapping clusters or partitions of graphs in the Vanted framework based on a method for laying out overview graph and several sub-graphs (partitions) in a coordinated, mental-map preserving way.
Biomolecular networks, including genome-scale metabolic models (GSMMs), assemble the knowledge regarding the biological processes that happen inside specific organisms in a way that allows for analysis, simulation, and exploration. With the increasing availability of genome annotations and the development of powerful reconstruction tools, biomolecular networks continue to grow ever larger. While visual exploration can facilitate the understanding of such networks, the network sizes represent a major challenge for current visualisation systems. Building on promising results from the area of immersive analytics, which among others deals with the potential of immersive visualisation for data analysis, we present a concept for a hybrid user interface that combines a classical desktop environment with a virtual reality environment for the visual exploration of large biomolecular networks and corresponding data. We present system requirements and design considerations, describe a resulting concept, an envisioned technical realisation, and a systems biology usage scenario. Finally, we discuss remaining challenges.
Spatially resolved transcriptomics (SRT) technologies produce complex, multi-dimensional data sets of gene expression information that can be obtained at subcellular spatial resolution. While several computational tools are available to process and analyse SRT data, no platforms facilitate the visualisation and interaction with SRT data in an immersive manner. Here we present VR-Omics, a computational platform that supports the analysis, visualisation, exploration, and interpretation SRT data compatible with any SRT technology. VR-Omics is the first tool capable of analysing and visualising data generated by multiple SRT platforms in both 2D desktop and virtual reality environments. It incorporates an in-built workflow to automatically pre-process and spatially mine the data within a user-friendly graphical user interface. Benchmarking VR-Omics against other comparable software demonstrates its seamless end-to-end analysis of SRT data, hence making SRT data processing and mining universally accessible. VR-Omics is an open-source software freely available at: https://ramialison-lab.github.io/pages/vromics.html
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.