Fibroblast Growth Factor Receptor 3 (FGFR3) related skeletal dysplasias are caused by mutations in the FGFR3 gene that result in increased activation of the receptors causing alterations in the process of endochondral ossification in all long bones, and include achondroplasia, hypochondroplasia, thanatophoric dysplasia, and SADDAN. Reports of prenatal diagnosis of FGFR3 related skeletal dysplasias are not rare; however, the correlation between 2nd trimester ultrasonographic findings and underlying molecular defect in these cases is relatively poor. There is a need for specific ultrasound (U/S) predictors than can distinguish lethal from non-lethal cases and aid an earlier prenatal diagnosis. Here we present one familial and 16 sporadic cases with FGFR3 related skeletal dysplasia, and we evaluate biometric parameters and U/S findings consistent with the diagnosis of skeletal dysplasia. U/S scan performed even at the 18th week of gestation can indicate a decreased rate of development of the femora (femur length (FL) <5th centile), while the mean gestational age at diagnosis is still around the 26th week. The utility of other biometric parameters and ratios is discussed (foot length, BPD, HC, FL/foot, and FL/AC). Prenatal cytogenetic and molecular genetic analyses were performed. A final diagnosis was reached by molecular analysis. In two cases of discontinued pregnancy, fetal autopsy led to a phenotypic diagnosis and confirmed the prenatal prediction of lethality. We conclude that the combination of U/S and molecular genetic approach is helpful for establishing an accurate diagnosis of FGFR3-related skeletal dysplasias in utero and subsequently for appropriate genetic counselling and perinatal management.
We present our data of a novel proposed CNA-profile risk-index, applied on a Greek ALLIC-BFM-treated cohort, aiming at further refining genomic risk-stratification. Eighty-five of 227 consecutively treated ALL patients were analyzed for the copy-number-status of eight genes (IKZF1/CDKN2A/2B/PAR1/BTG1/EBF1/PAX5/ETV6/RB1). Using the MLPA-assay, patients were stratified as: (1) Good-risk(GR)-CNA-profile (n = 51), with no deletion of IKZF1/CDKN2A/B/PAR1/BTG1/EBF1/PAX5/ETV6/RB1 or isolated deletions of ETV6/PAX5/BTG1 or ETV6 deletions with a single additional deletion of BTG1/PAX5/CDKN2A/B. (2) Poor-risk(PR)-CNA-profile (n = 34), with any deletion of ΙΚΖF1/PAR1/EBF1/RB1 or any other CΝΑ. With a median follow-up time of 49.9 months, EFS for GR-CNA-profile and PR-CNA-profile patients was 96.0% vs. 57.6% (p < 0.001). For IR-group and HR-group patients, EFS for the GR-CNA/PR-CNA subgroups was 100.0% vs. 60.0% (p < 0.001) and 88.2% vs. 55.6% (p = 0.047), respectively. Among FC-MRDd15 + patients (MRDd15 ≥ 10−4), EFS rates were 95.3% vs. 51.7% for GR-CNA/PR-CNA subjects (p < 0.001). Similarly, among FC-MRDd33 + patients (MRDd33 ≥ 10−4), EFS was 92.9% vs. 27.3% (p < 0.001) and for patients FC-MRDd33 − (MRDd33 < 10−4), EFS was 97.2% vs. 72.7% (p = 0.004), for GR-CNA/PR-CNA patients, respectively. In a multivariate analysis, the CNA-profile was the most important outcome predictor. In conclusion, the CNA-profile can establish a new genomic risk-index, identifying a distinct subgroup with increased relapse risk among the IR-group, as well as a subgroup of patients with superior prognosis among HR-patients. The CNA-profile is feasible in BFM-based protocols, further refining MRD-based risk-stratification.
In summary, molecular biology methods can be used for early detection of CMV in characteristic colonic lesions in HIV-1-positive patients. Furthermore, detection of mutant strains resistant to antiviral drugs as well as polymorphisms elucidate the natural history of the infection.
Inherited cardiovascular diseases are highly heterogeneous conditions with multiple genetic loci involved. The application of advanced molecular tools, such as Next Generation Sequencing, has facilitated the genetic analysis of these disorders. Accurate analysis and variant identification are required to maximize the quality of the sequencing data. Therefore, the application of NGS for clinical purposes should be limited to laboratories with a high level of technological expertise and resources. In addition, appropriate gene selection and variant interpretation can result in the highest possible diagnostic yield. Implementation of genetics in cardiology is imperative for the accurate diagnosis, prognosis and management of several inherited disorders and could eventually lead to the realization of precision medicine in this field. However, genetic testing should also be accompanied by an appropriate genetic counseling procedure that clarifies the significance of the genetic analysis results for the proband and his family. In this regard, a multidisciplinary collaboration among physicians, geneticists, and bioinformaticians is imperative. In the present review, we address the current state of knowledge regarding genetic analysis strategies employed in the field of cardiogenetics. Variant interpretation and reporting guidelines are explored. Additionally, gene selection procedures are accessed, with a particular emphasis on information concerning gene-disease associations collected from international alliances such as the Gene Curation Coalition (GenCC). In this context, a novel approach to gene categorization is proposed. Moreover, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, focusing on cardiology-related genes. Finally, the most recent information on genetic analysis's clinical utility is reviewed.
Alternative splicing (AS), a crucial cellular process, is a source of transcriptomic expansion and protein variability. Its contribution to cancer development and progression among a vast repertoire of human diseases, is highlighted lately and is under extensive investigation. In this review, the relative recent aspects of AS as a hallmark of cancer are described. In parallel, the importance of the identification of splicing-related variants through nextgeneration sequencing technologies is discussed. Cancer therapy and the management of patients and their families can highly benefit by the classification of these variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.