Abstract. We prove new local inequality for divisors on surfaces and utilize it to compute α-invariants of singular del Pezzo surfaces, which implies that del Pezzo surfaces of degree one whose singular points are of type A1, A2, A3, A4, A5 or A6 are Kähler-Einstein.We assume that all varieties are projective, normal, and defined over C.
Phylogenetic models admit polynomial parametrization maps in terms of the root distribution and transition probabilities along the edges of the phylogenetic tree. For symmetric continuous-time group-based models, Matsen studied the polynomial inequalities that characterize the joint probabilities in the image of these parametrizations (Matsen in IEEE/ACM Trans Comput Biol Bioinform 6:89–95, 2009). We employ this description for maximum likelihood estimation via numerical algebraic geometry. In particular, we explore an example where the maximum likelihood estimate does not exist, which would be difficult to discover without using algebraic methods.
We study the maximum likelihood estimation problem for several classes of toric Fano models. We start by exploring the maximum likelihood degree for all 2-dimensional Gorenstein toric Fano varieties. We show that the ML degree is equal to the degree of the surface in every case except for the quintic del Pezzo surface with two ordinary double points and provide explicit expressions that allow one to compute the maximum likelihood estimate in closed form whenever the ML degree is less than 5. We then explore the reasons for the ML degree drop using A-discriminants and intersection theory. Finally, we show that toric Fano varieties associated to 3-valent phylogenetic trees have ML degree one and provide a formula for the maximum likelihood estimate. We prove it as a corollary to a more general result about the multiplicativity of ML degrees of codimension zero toric fiber products, and it also follows from a connection to a recent result about staged trees.
We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.