Abstract. This study analyses the variability and trends of ultraviolet-B (UV-B, wavelength 280–320 nm) radiation that can cause DNA damage. The variability and trends caused by climate change due to enhanced greenhouse gas (GHG) concentrations. The analysis is based on DNA-active irradiance, total ozone, total cloud cover, and surface albedo calculations with the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) chemistry–climate model (CCM) free-running simulations following the RCP 6.0 climate scenario for the period 1960–2100. The model output is evaluated with DNA-active irradiance ground-based measurements, satellite SBUV (v8.7) total-ozone measurements, and satellite MODerate-resolution Imaging Spectroradiometer (MODIS) Terra cloud cover data. The results show that the model reproduces the observed variability and change in total ozone, DNA-active irradiance, and cloud cover for the period 2000–2018 quite well according to the statistical comparisons. Between 50∘ N–50∘ S, the DNA-damaging UV radiation is expected to decrease until 2050 and to increase thereafter, as was shown previously by Eleftheratos et al. (2020). This change is associated with decreases in the model total cloud cover and negative trends in total ozone after about 2050 due to increasing GHGs. The new study confirms the previous work by adding more stations over low latitudes and mid-latitudes (13 instead of 5 stations). In addition, we include estimates from high-latitude stations with long-term measurements of UV irradiance (three stations in the northern high latitudes and four stations in the southern high latitudes greater than 55∘). In contrast to the predictions for 50∘ N–50∘ S, it is shown that DNA-active irradiance will continue to decrease after the year 2050 over high latitudes because of upward ozone trends. At latitudes poleward of 55∘ N, we estimate that DNA-active irradiance will decrease by 8.2 %±3.8 % from 2050 to 2100. Similarly, at latitudes poleward of 55∘ S, DNA-active irradiance will decrease by 4.8 % ± 2.9 % after 2050. The results for the high latitudes refer to the summer period and not to the seasons when ozone depletion occurs, i.e. in late winter and spring. The contributions of ozone, cloud, and albedo trends to the DNA-active irradiance trends are estimated and discussed.
Abstract. In August 2021, a historic heatwave was recorded in Greece which resulted in extreme wildfire events that strongly affected the air quality over the city of Athens. Saharan dust was also transferred over Greece in the same period due to the prevailing southern winds. The impact of these events on air quality and surface solar radiation are investigated in this study. Event characterization based on active and passive remote sensing instrumentation has been performed. The study shows that significantly increased levels of air pollution were recorded during the end of July/first week of August. The smoke led to unusually high AOD values (up to 3.6), high Ångström Exponent (AE) (up to 2.4) and a strong and negative dependence of single scattering albedo (SSA) on wavelength that was observed to decrease from 0.93 at 440 nm to 0.86 at 1020 nm signifying the presence of strong absorbing aerosols. While, the dust event led to high AOD (up to 1.4), low AE (up to 0.9) and positive dependence of SSA on wavelength that was observed to increase from 0.89 at 440 nm to 0.95 at 1020 nm indicating large forward scattering due to coarse particles. Furthermore, the analysis of the smoke aerosol optical properties during the transfer from the source to a distance of about 240 km revealed that the SSA and AE changed significantly during the transfer, which lasted approximately 9 h. The transport of the plume led to an impressive change in the spectral shape of SSA whose value significantly increased pointing to the aging of smoke and the dilution of plumes while the transport. The impact of dust and smoke on spectral solar irradiance reveals significant differences in the spectral shape of attenuation caused by the two different aerosol species. The attenuation of solar irradiance in UV-B irradiance was found to be least in case of dust and highest due to smoke (up to 60 % or more) and intermediate in the case of a mixture of smoke and dust. The attenuation was comparatively less in NIR region (mostly within 20 % but it even reached up to 40 % in the presence of smoke) and VIS region (but greater than NIR region). Also, the AOD variations from climatology led to decrease in UV Index up to 53 %, in vitamin-D up to 50 %, in photosynthetically active radiation up to 21 % and in GHI up to 17 %, with implications on health, agriculture and energy. This study highlights the wider impacts of wildfires that are part of the wider problem of the Mediterranean countries, whose frequency is predicted to increase in view of the projected increasing occurrence of summer heatwaves.
Abstract. In August 2021, a historic heatwave was recorded in Greece which resulted in extreme wildfire events that strongly affected the air quality over the city of Athens. Saharan dust was also transferred over Greece on certain days of the same period due to the prevailing southern winds. The impact of these events on air quality and surface solar radiation is investigated in this study. Event characterization based on active and passive remote sensing instrumentation has been performed. The study shows that significantly increased levels of air pollution were recorded from the end of July to the first week of August. The smoke led to unusually high aerosol optical depth (AOD) values (up to 3.6 at 500 nm), high Ångström exponent (AE) (up to 2.4 at 440–870 nm), and a strong and negative dependence of single-scattering albedo (SSA) on wavelength that was observed to decrease from 0.93 at 440 nm to 0.86 at 1020 nm, while the dust event led to high AOD (up to 0.7 at 500 nm), low AE (up to 0.9 at 440–870 nm), and a positive dependence of SSA on wavelength that was observed to increase from 0.89 at 440 nm to 0.95 at 1020. Furthermore, the smoke plume was also detected over the PANhellenic GEophysical observatory of Antikythera on 7 August, which is about 240 km away from Athens. Increased AOD values (up to ∼ 0.90 at 500 nm) associated with a high fine-mode AOD (up to ∼ 0.85 at 500 nm) and decrease in SSA with wavelength suggested the dominance of fine biomass burning aerosols. The impact of dust and smoke on solar irradiance revealed significant differences in the spectral dependence of the attenuation caused by the two different aerosol types. The attenuation of solar irradiance in the ultraviolet (UV-B) spectrum was found to be much lower in the case of dust compared to smoke for similar AOD500 values. Differences were less pronounced in the near-infrared and visible spectral regions. The large AODs during the wildfires resulted in a decrease in the noon UV index by up to 53 %, as well as in the daily effective doses for the production of vitamin D (up to 50 %), in the daily photosynthetically active radiation (up to 21 %) and in the daily global horizontal irradiance (up to 17 %), with serious implications for health, agriculture, and energy. This study highlights the wider impacts of wildfires that are part of the wider problem for Mediterranean countries, whose frequency is predicted to increase in view of the projected increasing occurrence of summer heatwaves.
Sixteen years (July 2003–July 2019) of ground-based measurements of total ozone in the urban environment of Athens, Greece, are analyzed in this work. Measurements were acquired with a single Brewer monochromator operating on the roof of the Biomedical Research Foundation of the Academy of Athens since July 2003. We estimate a 16-year climatological mean of total ozone in Athens of about 322 DU, with no significant change since 2003. Ozone data from the Brewer spectrophotometer were compared with TOMS, OMI, and GOME-2A satellite retrievals. The results reveal excellent correlations between the ground-based and satellite ozone measurements greater than 0.9. The variability of total ozone over Athens related to the seasonal cycle, the quasi biennial oscillation (QBO), the El Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the 11-year solar cycle, and tropopause pressure variability is presented.
<p>In the framework of the Joint Aeolus Tropical Atlantic Campaign (JATAC), the ASKOS experiment was implemented in Cabo Verde during summer and autumn of 2021 and 2022. The main objective of ASKOS was the collection of an unprecedented dataset of synergistic measurements in the region, to be used to address a wide range of scientific objectives, namely the support of the validation of Aeolus mission&#8217;s products, the study of the processes affecting dessert dust transport (water vapor, giant particles, mixing with boundary layer dynamics), the characterization of the cloud microphysics, the effect of dust particles in the cloud formation over the region, the effect of the large dust particles on radiation and others.</p> <p>During the ASKOS experiment, intense ground-based remote sensing and airborne in situ measurements took place on and above Mindelo on the island of S&#227;o Vicente, Cabo Verde. At the Ocean Science Center in Mindelo (OSCM), a full ACTRIS remote sensing super site was set up in 2021, including a multiwavelength-Raman-polarization lidar PollyXT, an AERONET sun photometer, a Scanning Doppler wind lidar, a microwave radiometer and a cloud radar belonging to ESA fiducial reference network (FRM4Radar). Additionally, the ESA&#8217;s reference lidar system eVe, a combined linear/circular polarization lidar with Raman capabilities, was deployed. In 2022, the operations were enhanced with the deployment of airborne in-situ aerosol measurements on-board UAVs deployed by the Cyprus Institute, solar radiation measurements supported by PMOD/WRC, dust particle orientation measurements from the WALL-E lidar of National Observatory of Athens, and radiosonde releases equipped with additional electric field and electric charge measurements. The campaign was supported by dedicated numerical weather and dust simulations from CAMS and ECMWF, and tailored WRF simulations with nested domains above the campaign site. &#160;</p> <p>From the ASKOS dataset, three cases have been selected as "golden cases&#8221; where multiple JATAC airborne platforms and Aeolus satellite performed collocated measurements alongside with the ground-based instrumentation around the ASKOS operations site. Furthermore, multiple synergistic measurements with the JATAC airborne platforms were performed in the broader Cabo Verde region. Here, we quickly introduce ASKOS measurements and present first results.&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.