We develop distress prediction models for non-financial small and medium enterprises (SMEs) using a dataset from eight European countries over the period 2000-2009. We examine idiosyncratic and systematic covariates and find that macro conditions and bankruptcy codes add predictive power to our models. Moreover, industry effects usually demonstrate significance but provide small improvements. The paper contributes to the literature in several ways. First, using a sample with many micro companies, it offers unique insights into European small businesses. Second, it explores distress in a multi-country setting, allowing for regional and country comparisons. Third, the models can capture changes in overall distress rates and co-movements during economic cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.