Alzheimer's disease (AD) is a genetically complex disorder, and several genes related to cholesterol metabolism have been reported to contribute to AD risk. To identify further AD susceptibility genes, we have screened genes that map to chromosomal regions with high logarithm of the odds scores for AD in full genome scans and are related to cholesterol metabolism. In a European screening sample of 115 sporadic AD patients and 191 healthy control subjects, we analyzed single nucleotide polymorphisms in 28 cholesterol-related genes for association with AD. The genes HMGCS2, FDPS, RAFTLIN, ACAD8, NPC2, and ABCG1 were associated with AD at a significance level of P < or = 0.05 in this sample. Replication trials in five independent European samples detected associations of variants within HMGCS2, FDPS, NPC2, or ABCG1 with AD in some samples (P = 0.05 to P = 0.005). We did not identify a marker that was significantly associated with AD in the pooled sample (n = 2864). Stratification of this sample revealed an APOE-dependent association of HMGCS2 with AD (P = 0.004). We conclude that genetic variants investigated in this study may be associated with a moderate modification of the risk for AD in some samples.
A recent study demonstrated a significant genetic association between the ATP-binding cassette transporter A2 (ABCA2) and the risk for Alzheimer's disease (AD) in a large Caucasian sample. The rare T allele of the synonymous exonic single nucleotide polymorphism (SNP) rs908832 was overrepresented in early-onset AD patients as compared to cognitively healthy controls. Here we confirm the association of rs908832 with AD in a Western European population (n = 291, P = 0.008). In a second sample from Southern Europe, rs908832 was not associated with AD. Interestingly, rs908832 was not polymorphic in a Japanese sample. Furthermore, rs908832 was not associated with either serum cholesterol levels or with the risk for coronary artery disease, but seemed to be related to cholesterol levels in the cerebrospinal fluid. These data suggest that ABCA2 may exert population-dependent effects on the genetic risk for sporadic AD and support a role of ABC lipid transporters in the pathogenesis of this disease.
Active vision is a dynamic process involving the flexible coordination of different gaze strategies to achieve behavioral goals. Although many complex behaviors rely on an ability to efficiently switch between gaze-control strategies, few studies to date have examined mechanisms of task level oculomotor control in detail. Here, we report five experiments in which subjects alternated between conflicting stimulus-saccade mappings within a block of trials. The first experiment showed that there is no performance cost associated with switching between pro and anti saccades. However, follow-up experiments demonstrate that whenever subjects alternate between arbitrary stimulus-saccade mappings, latency costs are apparent on the first trial after a task change. More detailed analysis of switch costs showed that latencies were particularly elevated for saccades directed toward the same location that had been the target for a saccade on the preceeding trial. This saccade "inhibition of return" effect was most marked when unexpected error feedbacks cued task switches, suggesting that saccade selection processes are modulated by reward. We conclude that there are two systems for saccade control that differ in their characteristics following a task switch. The "reflexive" control system can be enabled/disabled in advance of saccade execution without incurring any performance cost. Switch costs are only observed when two or more arbitrary stimulus-saccade mappings have to be coordinated by a "symbolic" control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.