The capacity of intracytoplasmic sperm injection (ICSI) to permit almost any type of spermatozoa to fertilize oocytes has made it the most successful treatment for male factor infertility. Despite its high success rates, fertilization failure following ICSI still occurs in 1-3% of couples. Assisted oocyte activation (AOA) is being increasingly applied in human assisted reproduction to restore fertilization and pregnancy rates in couples with a history of ICSI fertilization failure. However, controversy still exists mainly because the artificial activating agents do not mimic precisely the initial physiological processes of mammalian oocyte activation, which has led to safety concerns. This review addresses the mechanism of human oocyte activation and the relatively rare phenomenon of fertilization failure after ICSI. Next, it describes the current diagnostic approaches and focuses on the application, efficiency and safety of AOA in human assisted reproduction.
We demonstrate, for the first time, the production of active recombinant human PLCζ protein which retained the ability to elicit characteristic Ca(2+) oscillations in mouse oocytes, an ability which was eliminated by an infertility-linked mutation. These findings advance our understanding of PLCζ, and provide a critical step forward in obtaining purified PLCζ protein as a potential therapeutic agent for oocyte activation deficiency.
To date, mutations in two genes, SPATA16 and DPY19L2, have been identified as responsible for a severe teratozoospermia, namely globozoospermia. The two initial descriptions of the DPY19L2 deletion lead to a very different rate of occurrence of this mutation among globospermic patients. In order to better estimate the contribution of DPY19L2 in globozoospermia, we screened a larger cohort including 64 globozoospermic patients. Twenty of the new patients were homozygous for the DPY19L2 deletion, and 7 were compound heterozygous for both this deletion and a point mutation. We also identified four additional mutated patients. The final mutation load in our cohort is 66.7% (36 out of 54). Out of 36 mutated patients, 69.4% are homozygous deleted, 19.4% heterozygous composite and 11.1% showed a homozygous point mutation. The mechanism underlying the deletion is a non-allelic homologous recombination (NAHR) between the flanking low-copy repeats. Here, we characterized a total of nine breakpoints for the DPY19L2 NAHR-driven deletion that clustered in two recombination hotspots, both containing direct repeat elements (AluSq2 in hotspot 1, THE1B in hotspot 2). Globozoospermia can be considered as a new genomic disorder. This study confirms that DPY19L2 is the major gene responsible for globozoospermia and enlarges the spectrum of possible mutations in the gene. This is a major finding and should contribute to the development of an efficient molecular diagnosis strategy for globozoospermia.
For patients with a suspected oocyte-related activation deficiency, as diagnosed by a heterologuous ICSI model, the indication for ICSI-AOA still remains debatable. Our data show that ICSI-AOA is very efficient in patients with a suspected oocyte-related activation deficiency and previous TFF after conventional ICSI. In contrast, when there was a history of LF in another centre, one should be careful and test the efficiency of ICSI-AOA on half of the sibling oocytes, because ICSI-AOA is not always beneficial for patients with previous LF and a suspected oocyte-related activation deficiency. For these patients, a split ICSI-AOA cycle using sibling oocytes can help to distinguish between a molecular oocyte-related activation deficiency and a previous technical or other biological failure. Moreover, this split ICSI-AOA strategy enables us to set the appropriate strategy for future treatment cycles. Further research with larger groups of patients is now required.
F.V.M. is holder of an aspirant clinical research mandate by the Flemish foundation of Scientific Research (FWO-Vlaanderen). B.H. is supported by a Ghent University grant (KAN-BOF E/01321/01). P.D.S. is holder of a fundamental clinical research mandate by the same Flemish foundation of Scientific Research (FWO-Vlaanderen).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.