A high spin polarization of states around the Fermi level, EF, at room temperature has been measured in the past at the interface between a few molecular candidates and the ferromagnetic metal Co. Is this promising property for spintronics limited to these candidates? Previous reports suggested that certain conditions, such as strong ferromagnetism, i.e., a fully occupied spin-up d band of the ferromagnet, or the presence of π bonds on the molecule, i.e., molecular conjugation, needed to be met. What rules govern the presence of this property? We have performed spin-resolved photoemission spectroscopy measurements on a variety of such interfaces. We find that this property is robust against changes to the molecule and ferromagnetic metal's electronic properties, including the aforementioned conditions. This affirms the generality of highly spin-polarized states at the interface between a ferromagnetic metal and a molecule and augurs bright prospects toward integrating these interfaces within organic spintronic devices.
Organic electronics offers prospects of functionality for science, industry and medicine that are new as compared with silicon technology and available at a very low material cost. Among the plethora of organic molecules available for materials design, polymers and oligomers are very promising, for example, because of their mechanical flexibility. They consist of repeated basic units, such as benzene rings, and the number of these units N determines their excitation gap, a property that is often used in proposals of organic photovoltaics. Here, we show that contrary to a widely held belief the magnitudes of excitation gaps do not always decay monotonously with N, but can oscillate due to the presence of a 'Dirac cone' in the band structure. With an eye on the more fundamental question how a molecular wire becomes metallic with increasing length, our research suggests that the process can exhibit incommensurate oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.