It is an open question how the chemical structure of prebiotic vesicle-forming amphiphiles complexified to produce robust primitive compartments that could safely host foreign molecules. Previous work suggests that comparingly labile vesicles composed of plausibly prebiotic fatty acids were eventually chemically transformed with glycerol and a suitable phosphate source into phospholipids that would form robust vesicles. Here we show that phosphatidic acid (PA) and phosphatidylethanolamine (PE) lipids can be obtained from racemic dioleoyl glycerol under plausibly prebiotic phosphorylation conditions. Upon in situ hydration of the crude phosphorylation mixtures only those that contained rac-DOPA (not rac-DOPE) generated stable giant vesicles that were capable of encapsulating water-soluble probes, as evidenced by confocal microscopy and flow cytometry. Chemical reaction side-products (identified by IR and MS and quantified by 1H NMR) acted as co-surfactants and facilitated vesicle formation. To mimic the compositional variation of such primitive lipid mixtures, self-assembly of a combinatorial set of the above amphiphiles was tested, revealing that too high dioleoyl glycerol contents inhibited vesicle formation. We conclude that a decisive driving force for the gradual transition from unstable fatty acid vesicles to robust diacylglyceryl phosphate vesicles was to avoid the accumulation of unphosphorylated diacylglycerols in primitive vesicle membranes.
A series of alkyl thioglycosides and alkyl thiodiglycosides bearing glucose and N-acetylglucosamine residues were prepared by thiol–ene coupling in moderate to good yields (40–85%). Their binding ability towards wheat germ agglutinin was measured by competitive enzyme-linked lectin assays. One of the synthetic compounds presenting two GlcNAc units showed the highest inhibitory effect of this study with an IC50 of 11 µM corresponding to a 3182-fold improvement compared to GlcNAc. These synthetic molecules were used to produce giant vesicles, alone or in mixture with phospholipids, mimicking bacterial outer membrane vesicles (OMV) with potential antiadhesive properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.