Metastatic melanoma is one of the most aggressive forms of cutaneous cancers. Although recent therapeutic advances have prolonged patient survival, the prognosis remains dismal. C-MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase with oncogenic properties that is often overexpressed or activated in various malignancies. Using both protein immunohistochemistry and microarray analyses, we demonstrate that MERTK expression correlates with disease progression. MERTK expression was highest in metastatic melanomas, followed by primary melanomas, while the lowest expression was observed in nevi.
IntroductionAlthough early cutaneous melanoma is usually curable with surgery, distant metastatic melanoma is an aggressive cancer with a median overall survival time of less than 1 year. In 2012, over 75,000 new melanoma diagnoses were expected and over 9,000 deaths were projected (1). Advances in the understanding of distinct melanoma subtypes as well as melanoma immunobiology have resulted in 2 FDA-approved therapies for metastatic melanoma in 2011: vemurafenib, an inhibitor of mutant BRAF -an oncogene present in approximately 50% of melanomas -and ipilimumab, a monoclonal antibody that targets CTLA-4 (2-4). Despite these rather impressive developments, the overall clinical benefit is limited to either small subgroups of patients who
Background & Aims-Patients with Barrett's esophagus (BE) show increased risk for developing esophageal adenocarcinoma and are routinely examined using upper endoscopy with biopsy to search for neoplastic changes. Angle-resolved low coherence interferometry (a/LCI) uses in vivo depth-resolved nuclear morphology measurements to detect dysplasia. We assessed the clinical utility of a/LCI in the endoscopic surveillance of BE patients.
Despite compelling evidence from twin and family studies indicating a strong genetic involvement in the etiology of autism, the unequivocal detection of autism susceptibility genes remains an elusive goal. The purpose of this review is to evaluate the current state of autism genetics research, with attention focused on new techniques and analytic approaches. We first present a brief overview of evidence for the genetic basis of autism, followed by an appraisal of linkage and candidate gene study findings and consideration of new analytic approaches to the study of complex psychiatric conditions, namely, genome-wide association studies, assessment of structural variation within the genome, and the incorporation of endophenotypes in genetic analysis.
Ect2, a Rho guanine nucleotide exchange factor (RhoGEF), is atypical among RhoGEFs in its predominantly nuclear localization in interphase cells. One current model suggests that Ect2 mislocalization drives cellular transformation by promoting aberrant activation of cytoplasmic Rho family GTPase substrates. However, in ovarian cancers, where Ect2 is both amplified and overexpressed at the mRNA level, we observed that the protein is highly expressed and predominantly nuclear and that nuclear but not cytoplasmic Ect2 increases with advanced disease. Knockdown of Ect2 in ovarian cancer cell lines impaired their anchorage-independent growth without affecting their growth on plastic. Restoration of Ect2 expression rescued the anchorage-independent growth defect, but not if either the DH catalytic domain or the nuclear localization sequences of Ect2 were mutated. These results suggested a novel mechanism whereby Ect2 could drive transformation in ovarian cancer cells by acting as a RhoGEF specifically within the nucleus. Interestingly, Ect2 had an intrinsically distinct GTPase specificity profile in the nucleus versus the cytoplasm. Nuclear Ect2 bound preferentially to Rac1, while cytoplasmic Ect2 bound to RhoA but not Rac. Consistent with nuclear activation of endogenous Rac, Ect2 overexpression was sufficient to recruit Rac effectors to the nucleus, a process that required a functional Ect2 catalytic domain. Furthermore, expression of active nuclearly targeted Rac1 rescued the defect in transformed growth caused by Ect2 knockdown. Our work suggests a novel mechanism of Ect2-driven transformation, identifies subcellular localization as a regulator of GEF specificity, and implicates activation of nuclear Rac1 in cellular transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.