BackgroundThe rational design of modified proteins with controlled stability is of extreme importance in a whole range of applications, notably in the biotechnological and environmental areas, where proteins are used for their catalytic or other functional activities. Future breakthroughs in medical research may also be expected from an improved understanding of the effect of naturally occurring disease-causing mutations on the molecular level.ResultsPoPMuSiC-2.1 is a web server that predicts the thermodynamic stability changes caused by single site mutations in proteins, using a linear combination of statistical potentials whose coefficients depend on the solvent accessibility of the mutated residue. PoPMuSiC presents good prediction performances (correlation coefficient of 0.8 between predicted and measured stability changes, in cross validation, after exclusion of 10% outliers). It is moreover very fast, allowing the prediction of the stability changes resulting from all possible mutations in a medium size protein in less than a minute. This unique functionality is user-friendly implemented in PoPMuSiC and is particularly easy to exploit. Another new functionality of our server concerns the estimation of the optimality of each amino acid in the sequence, with respect to the stability of the structure. It may be used to detect structural weaknesses, i.e. clusters of non-optimal residues, which represent particularly interesting sites for introducing targeted mutations. This sequence optimality data is also expected to have significant implications in the prediction and the analysis of particular structural or functional protein regions. To illustrate the interest of this new functionality, we apply it to a dataset of known catalytic sites, and show that a much larger than average concentration of structural weaknesses is detected, quantifying how these sites have been optimized for function rather than stability.ConclusionThe freely available PoPMuSiC-2.1 web server is highly useful for identifying very rapidly a list of possibly relevant mutations with the desired stability properties, on which subsequent experimental studies can be focused. It can also be used to detect sequence regions corresponding to structural weaknesses, which could be functionally important or structurally delicate regions, with obvious applications in rational protein design.
The ability of proteins to establish highly selective interactions with a variety of (macro)molecular partners is a crucial prerequisite to the realization of their biological functions. The availability of computational tools to evaluate the impact of mutations on protein–protein binding can therefore be valuable in a wide range of industrial and biomedical applications, and help rationalize the consequences of non-synonymous single-nucleotide polymorphisms. BeAtMuSiC (http://babylone.ulb.ac.be/beatmusic) is a coarse-grained predictor of the changes in binding free energy induced by point mutations. It relies on a set of statistical potentials derived from known protein structures, and combines the effect of the mutation on the strength of the interactions at the interface, and on the overall stability of the complex. The BeAtMuSiC server requires as input the structure of the protein–protein complex, and gives the possibility to assess rapidly all possible mutations in a protein chain or at the interface, with predictive performances that are in line with the best current methodologies.
We propose a novel and flexible derivation scheme of statistical, database-derived, potentials, which allows one to take simultaneously into account specific correlations between several sequence and structure descriptors. This scheme leads to the decomposition of the total folding free energy of a protein into a sum of lower order terms, thereby giving the possibility to analyze independently each contribution and clarify its significance and importance, to avoid overcounting certain contributions, and to deal more efficiently with the limited size of the database. In addition, this derivation scheme appears as quite general, for many previously developed potentials can be expressed as particular cases of our formalism. We use this formalism as a framework to generate different residue-based energy functions, whose performances are assessed on the basis of their ability to discriminate genuine proteins from decoy models. The optimal potential is generated as a combination of several coupling terms, measuring correlations between residue types, backbone torsion angles, solvent accessibilities, relative positions along the sequence, and interresidue distances. This potential outperforms all tested residue-based potentials, and even several atom-based potentials. Its incorporation in algorithms aiming at predicting protein structure and stability should therefore substantially improve their performances.
For 238 mutations of residues totally or partially buried in the protein core, we estimate the folding free energy changes upon mutation using database-derived potentials and correlate them with the experimentally measured ones. Several potentials are tested, representing different kinds of interactions. Local interactions along the chain are described by torsion potentials, based on propensities of amino acids to be associated with backbone torsion angle domains. Non-local interactions along the sequence are represented by distance potentials, derived from propensities of amino acid pairs or triplets to be at a given spatial distance. We ®nd that for the set of totally buried residues, the best performing potential is a combination of a distance potential and a torsion potential weighted by a factor of 0.4; it yields a correlation coef®cient between computed and measured changes in folding free energy of 0.80. For mutations of partially buried residues, the best potential is a combination of a torsion potential and a distance potential weighted by a factor of 0.7, and for the previously analysed mutations of solvent accessible residues, it is a torsion potential taken individually; the respective correlation coef®cients reach 0.82 and 0.87. These results show that distance potentials, dominated by hydrophobic interactions, represent best the main interactions stabilizing the protein core, whereas torsion potentials, describing local interactions along the chain, represent best the interactions at the protein surface. The prediction accuracy reached by the distance potentials is, however, lower than that of the torsion potentials. A possible reason for this is that distance potentials would not describe correctly the effect on protein stability due to cavity formation upon mutating a large into a small amino acid. Last but not least, our results indicate that although local interactions, responsible for secondary structure formation, do not dominate in the protein core, they are not negligible for all that. They have a signi®cant weight in the delicate balance between all the interactions that ensure protein stability.# 1997 Academic Press Limited
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.