Abstract:Self-organization of nanoparticles is a major issue to synthesize mesoscopic structures. Among the possible mechanisms leading to self-organization, the oriented attachment is efficient yet not completely understood. We investigate here the oriented attachment process of ZnO nanocrystals preformed in the gas phase. During the deposition in high vacuum, about 60% of the particles, which are uncapped, form larger crystals through oriented attachment. In the present conditions of deposition no selective direction for the oriented attachment is noticed. To probe the driving force of the oriented attachment, and more specifically the possible influence of the dipolar interaction between particles, we have deposited the same nanocrystals in the presence of a constant electric field. The expected effect was to enhance the fraction of domains resulting from the oriented attachment due to the increased interaction of the particle dipoles with the electric field. The multiscale analytical and statistical analysis (TEM coupled to XRD) shows no significant influence of the electric field on the organization of the particles. We therefore 2 conclude that the dipolar interaction between nanocrystals is not the prominent driving force in the process. Consequently, we argue, in accordance with recent theoretical and experimental investigations, that the surface reduction, possibly driven by Coulombic interaction, may be the major mechanism for the oriented attachment process.
The effects of surface and interface on the thermodynamics of small particles require a deeper understanding. This step is crucial for the development of models that can be used for decision-making support to design nanomaterials with original properties. On the basis of experimental results for phase transitions in compressed ZnO nanoparticles, we show the limitations of classical thermodynamics approaches (Gibbs and Landau). We develop a new model based on the Ginzburg-Landau theory that requires the consideration of several terms, such as the interaction between nanoparticles, pressure gradients, defect density, and so on. This phenomenological approach sheds light on the discrepancies in the literature as it identifies several possible parameters that should be taken into account to properly describe the transformations. For the sake of clarity and standardization, we propose an experimental protocol that must be followed during high-pressure investigations of nanoparticles in order to obtain coherent, reliable data that can be used by the scientific community.
The potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials’ own physicochemical properties as well as the environment they are exposed to. This study focuses on the mechanisms of transformation of cerium oxide nanoparticles (CeO 2 NPs) in laboratory experiments which simulate potential scenarios in which the NPs are exposed to phosphate-bearing media. We have experimented with the transformation of four different kinds of CeO 2 NPs, in order to investigate the effects of nanoparticle size, capping agent (three were uncapped and one was PVP capped) and oxidation state (two consisted mostly of Ce 4+ and two were a mix of Ce 3+/ Ce 4+ ). They were exposed to a reaction solution containing KH 2 PO 4 , citric acid and ascorbic acid at pH values of 2.3, 5.5 and 12.3, and concentrations of 1mM and 5mM. The transformations were followed by UV-vis, zeta potential and XRD measurements, which were taken after 7 and 21 days, and by transmission electron microscopy after 21 days. X-ray photoelectron spectroscopy was measured at 5mM concentration after 21 days for some samples. Results show that for pH 5 and 5mM phosphate concentration, CePO 4 NPs were formed. Nanoparticles that were mostly Ce 4+ did not dissolve at 1mM reagent concentration, and did not produce CePO 4 NPs. When PVP was present as a capping agent it proved to be an extra reducing agent, and CePO 4 was found under all conditions used. This is the first paper where the transformation of CeO 2 NPs in the presence of phosphate has been studied for particles with different size, shapes and capping agents, in a range of different conditions and using many different characterisation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.