3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.
3D printing of renewable building blocks like cellulose nanocrystals offers an attractive pathway for fabricating sustainable structures. Here, viscoelastic inks composed of anisotropic cellulose nanocrystals (CNC) that enable patterning of 3D objects by direct ink writing are designed and formulated. These concentrated inks are composed of CNC particles suspended in either water or a photopolymerizable monomer solution. The shear-induced alignment of these anisotropic building blocks during printing is quantified by atomic force microscopy, polarized light microscopy, and 2D wide-angle X-ray scattering measurements. Akin to the microreinforcing effect in plant cell walls, the alignment of CNC particles during direct writing yields textured composites with enhanced stiffness along the printing direction. The observations serve as an important step forward toward the development of sustainable materials for 3D printing of cellular architectures with tailored mechanical properties.
Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D-printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect-rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect-tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics.
Cellulose is an attractive material resource for the fabrication of sustainable functional products, but its processing into structures with complex architecture and high cellulose content remains challenging. Such limitation has prevented cellulose‐based synthetic materials from reaching the level of structural control and mechanical properties observed in their biological counterparts, such as wood and plant tissues. To address this issue, a simple approach is reported to manufacture complex‐shaped cellulose‐based composites, in which the shaping capabilities of 3D printing technologies are combined with a wet densification process that increases the concentration of cellulose in the final printed material. Densification is achieved by exchanging the liquid of the wet printed material with a poor solvent mixture that induces attractive interactions between cellulose particles. The effect of the solvent mixture on the final cellulose concentration is rationalized using solubility parameters that quantify the attractive interparticle interactions. Using X‐ray diffraction analysis and mechanical tests, 3D printed composites obtained through this process are shown to exhibit highly aligned microstructures and mechanical properties significantly higher than those obtained by earlier additively manufactured cellulose‐based materials. These features enable the fabrication of cellulose‐rich synthetic structures that more closely resemble the exquisite designs found in biological materials grown by plants in nature.
Although strength and toughness are often mutually exclusive properties in manmade structural materials, nature is full of examples of composite materials that combine these properties in a remarkable way through sophisticated multiscale architectures. Understanding the contributions of the different constituents to the energy dissipating toughening mechanisms active in these natural materials is crucial for the development of strong artificial composites with a high resistance to fracture. Here, we systematically study the influence of the polymer properties on the mechanics of nacre-like composites containing an intermediate fraction of mineral phase (57 2 vol%). To this end, we infiltrate ceramic scaffolds prepared by magnetically assisted slip casting (MASC) with monomers that are subsequently cured to yield three drastically different polymers: (i) poly(lauryl methacrylate) (PLMA), a soft and weak elastomer; (ii) poly(methyl methacrylate) (PMMA), a strong, stiff and brittle thermoplastic; and (iii) polyether urethane diacrylate-co-poly(2-hydroxyethyl methacrylate) (PUA-PHEMA), a tough polymer of intermediate strength and stiffness. By combining our experimental data with finite element modeling, we find that stiffer polymers can increase the strength of the composite by reducing stress concentrations in the inorganic scaffold.Moreover, infiltrating the scaffolds with tough polymers leads to composites with high crack initiation toughness KIC. An organic phase with a minimum strength and toughness is also required to fully activate the mechanisms programmed within the ceramic structure for a rising R-curve behavior. Our results indicate that a high modulus of toughness is a key parameter for the selection of polymers leading to strong and tough bioinspired nacre-like composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.