Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Link to publication• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Motivated by both established and new applications, we study navigational query languages for graphs (binary relations). The simplest language has only the two operators union and composition, together with the identity relation. We make more powerful languages by adding any of the following operators: intersection; set difference; projection; coprojection; converse; and the diversity relation. All these operators map binary relations to binary relations. We compare the expressive power of all resulting languages. We do this not only for general path queries (queries where the result may be any binary relation) but also for boolean or yes/no queries (expressed by the nonemptiness of an expression). For both cases, we present the complete Hasse diagram of relative expressiveness. In particular the Hasse diagram for boolean queries contains some nontrivial separations and a few surprising collapses.
Motivated by both established and new applications, we study navigational query languages for graphs (binary relations). The simplest language has only the two operators union and composition, together with the identity relation. We make more powerful languages by adding any of the following operators: intersection; set difference; projection; coprojection; converse; transitive closure; and the diversity relation. All these operators map binary relations to binary relations. We compare the expressive power of all resulting languages, both for binary-relation queries as well as for boolean queries. In the absence of transitive closure, a complete Hasse diagram of relative expressiveness has already been established [8]. Moreover, it has already been shown that for boolean queries over a single edge label, transitive closure does not add any expressive power when only projection and diversity may be present [11]. In the present paper, we now complete the Hasse diagram in the presence of transitive closure, both for the case of a single edge label, as well as for the case of at least two edge labels. The main technical results are the following:1. In contrast to the above-stated result [11] transitive closure does add expressive power when coprojection is present.2. Transitive closure also adds expressive power as soon as converse is present.3. Conversely, converse adds expressive power in the presence of transitive closure. In particular, the converse elimination result from [8] no longer works in the presence of transitive closure.4. As a corollary, we show that the converse elimination result from [8] necessitates an exponential blow-up in the degree of the expressions.
The logic of information flows (LIF) is a general framework in which tasks of a procedural nature can be modeled in a declarative, logic-based fashion. The first contribution of this paper is to propose semantic and syntactic definitions of inputs and outputs of LIF expressions. We study how the two relate and show that our syntactic definition is optimal in a sense that is made precise. The second contribution of this paper is a systematic study of the expressive power of sequential composition in LIF. Our results on composition tie in the results on inputs and outputs, and relate LIF to first-order logic (FO) and bounded-variable LIF to bounded-variable FO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.