Carbapenem-resistant Enterobacteriaceae (CRE) present an urgent threat to public health. While use of carbapenem antimicrobials is restricted for foodproducing animals, other -lactams, such as ceftiofur, are used in livestock. This use may provide selection pressure favoring the amplification of carbapenem resistance, but this relationship has not been established. Previously unreported among U.S. livestock, plasmid-mediated CRE have been reported from livestock in Europe and Asia. In this study, environmental and fecal samples were collected from a 1,500-sow, U.S. farrow-to-finish operation during 4 visits over a 5-month period in 2015. Samples were screened using selective media for the presence of CRE, and the resulting carbapenemase-producing isolates were further characterized. Of 30 environmental samples collected from a nursery room on our initial visit, 2 (7%) samples yielded 3 isolates, 2 sequence type 218 (ST 218) Escherichia coli and 1 Proteus mirabilis, carrying the metallo--lactamase gene bla IMP-27 on IncQ1 plasmids. We recovered on our third visit 15 IMP-27-bearing isolates of multiple Enterobacteriaceae species from 11 of 24 (46%) environmental samples from 2 farrowing rooms. These isolates each also carried bla IMP-27 on IncQ1 plasmids. No CRE isolates were recovered from fecal swabs or samples in this study. As is common in U.S. swine production, piglets on this farm receive ceftiofur at birth, with males receiving a second dose at castration (Ϸday 6). This selection pressure may favor the dissemination of bla IMP-27 -bearing Enterobacteriaceae in this farrowing barn. The absence of this selection pressure in the nursery and finisher barns likely resulted in the loss of the ecological niche needed for maintenance of this carbapenem resistance gene.
OBJECTIVE To determine whether brachycephalic dogs were at greater risk of anesthesia-related complications than nonbrachycephalic dogs and identify other risk factors for such complications. DESIGN Retrospective cohort study. ANIMALS 223 client-owned brachycephalic dogs undergoing general anesthesia for routine surgery or diagnostic imaging during 2012 and 223 nonbrachycephalic client-owned dogs matched by surgical procedure and other characteristics. PROCEDURES Data were obtained from the medical records regarding dog signalment, clinical signs, anesthetic variables, surgery characteristics, and complications noted during or following anesthesia (prior to discharge from the hospital). Risk of complications was compared between brachycephalic and nonbrachycephalic dogs, controlling for other factors. RESULTS Perianesthetic (intra-anesthetic and postanesthetic) complications were recorded for 49.1% (n = 219) of all 446 dogs (49.8% [111/223] of brachycephalic and 48.4% [108/223] of nonbrachycephalic dogs), and postanesthetic complications were recorded for 8.7% (39/446; 13.9% [31/223] of brachycephalic and 3.6% [8/223] of nonbrachycephalic dogs). Factors associated with a higher perianesthetic complication rate included brachycephalic status and longer (vs shorter) duration of anesthesia; the risk of perianesthetic complications decreased with increasing body weight and with orthopedic or radiologic procedures (vs soft tissue procedures). Factors associated with a higher postanesthetic complication rate included brachycephalic status, increasing American Society of Anesthesiologists status, use of ketamine plus a benzodiazepine (vs propofol with or without lidocaine) for anesthetic induction, and invasive (vs noninvasive) procedures. CONCLUSIONS AND CLINICAL RELEVANCE Controlling for other factors, brachycephalic dogs undergoing routine surgery or imaging were at higher risk of peri- and postanesthetic complications than nonbrachycephalic dogs. Careful monitoring is recommended for brachycephalic dogs in the perianesthetic period.
Carbapenemase-producing bacteria (CPB) are rare, multidrug resistant organisms most commonly associated with hospitalized patients. Metropolitan wastewater treatment plants (WWTP) treat wastewater from large geographic areas which include hospitals and may serve as epidemiologic reservoirs for the maintenance or expansion of CPB that originate from hospitals and are ultimately discharged in treated effluent. However, little is known about the potential impact of these WWTP CPB on the local surface water and their risk to the public health. In addition, CPB that are present in surface water may ultimately disseminate to intensively-managed animal agriculture facilities where there is potential for amplification by extended-spectrum cephalosporins. To better understand the role of WWTPs in the dissemination of CPB in surface waters, we obtained samples of treated effluent, and both upstream and downstream nearby surface water from 50 WWTPs throughout the US. A total of 30 CPB with clinically-relevant genotypes were recovered from 15 WWTPs (30%) of which 13 (50%) serviced large metropolitan areas and 2 (8.3%) represented small rural populations (P < 0.05). Recovery of CPB was lowest among WWTPs that utilized ultraviolet radiation for primary disinfection (12%), and higher (P = 0.11) for WWTPs that used chlorination (42%) or that did not utilize disinfection (50%). We did not detect a difference in CPB recovery by sampling site, although fewer CPB were detected in upstream (8%) compared to effluent (20%) and downstream (18%) samples. Our results indicate that WWTP effluent and nearby surface waters in the US are routinely contaminated with CPB with clinically important genotypes including those producing Klebsiella pneumoniae carbapenemase (KPC) and New Delhi metallo-beta-lactamase (NDM). This is a concern for both public health and animal agriculture because introduction of CPB into intensively managed livestock populations could lead to their amplification and foodborne dissemination.
Antimicrobial-resistant bacteria represent an important concern impacting both veterinary medicine and public health. The rising prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase, carbapenemase (CRE) and fluoroquinolone-resistant Enterobacteriaceae continually decreases the efficiency of clinically important antibiotics. Moreover, the potential for zoonotic transmission of antibiotic-resistant enteric bacteria increases the risk to public health. Our objective was to estimate the prevalence of specific antibiotic-resistant bacteria on human contact surfaces in various animal environments. Environmental surface samples were collected from companion animal shelters, private equine facilities, dairy farms, livestock auction markets and livestock areas of county fairs using electrostatic cloths. Samples were screened for Enterobacteriaceae expressing AmpC, ESBL, CRE or fluoroquinolone resistance using selective media. Livestock auction markets and county fairs had higher levels of bacteria expressing both cephalosporin and fluoroquinolone resistance than did equine, dairy, and companion animal environments. Equine facilities harboured more bacteria expressing cephalosporin resistance than companion animal shelters, but less fluoroquinolone resistance. The regular use of extended-spectrum cephalosporins in livestock populations could account for the increased levels of cephalosporin resistance in livestock environments compared to companion animal and equine facilities. Human surfaces, as well as shared human and animal surfaces, were contaminated with resistant bacteria regardless of species environment. Detecting these bacteria on common human contact surfaces suggests that the environment can serve as a reservoir for the zoonotic transmission of antibiotic-resistant bacteria and resistance genes. Identifying interventions to lower the prevalence of antibiotic-resistant bacteria in animal environments will protect both animal and public health.
Carbapenemase-producing Enterobacteriaceae (CPE) threaten both agriculture and public health. While carbapenems are restricted in food-producing animals, other β-lactams, such as ceftiofur, are frequently applied in livestock. While the relationship is not fully elucidated, ceftiofur use may provide selective pressure that promotes carbapenem resistance. Recently reported in U.S. livestock, plasmid-mediated CPE are also present in livestock in Europe and Asia. We previously reported the rare carbapenemase gene, bla, in the environment of a large farrow-to-finish swine operation. To better understand CPE in this swine production system, in 2016 we followed a cohort of 350+ pigs over 5 months from late sow gestation to the final finishing phase. We screened both environmental and fecal samples for CPE using our selective enrichment protocol, with resulting phenotypic CPE isolates further characterized. Of 55 environmental and 109 sow fecal samples collected from a farrowing barn on our initial visit, 35 (64%) environmental and 15 (14%) sow fecal samples yielded isolates of multiple Enterobacteriaceae species carrying the metallo-β-lactamase gene bla on an IncQ plasmid. The frequency of IMP-64-positive environmental (n = 32), sow fecal (n = 30), and piglet fecal swab (n = 120) samples was highest for all groups when the market pig cohort was between 1 and 10 days, with observed prevalence of 97%, 28%, and 18%, respectively. After weaning, bla was detected in a single environmental sample from a nursery pen, with no CPE recovered in the finishing phase. Used in U.S. swine production to treat and control disease, ceftiofur is administered to piglets on this farm at birth, with males receiving a second dose at castration (≈day 7). Once introduced into animal agriculture, the common use of ceftiofur may provide the selection pressure required for CPE dissemination throughout large, intensively managed food animal populations housed in animal-dense environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.