Phenolic acids represent abundant components contained in human diet. However, the negative charge in their carboxylic group limits their capacity to diffuse through biological membranes, thus hindering their access to cell interior. In order to promote the diffusion of rosmarinic acid through biological membranes, we synthesized several lipophilic ester- and amide-derivatives of this compound and evaluated their capacity to prevent H2O2-induced DNA damage and apoptosis in cultured human cells. Esterification of the carboxylic moiety with lipophilic groups strongly enhanced the capacity of rosmarinic acid to protect cells. On the other hand, the amide-derivatives were somewhat less effective but exerted less cytotoxicity at high concentrations. Cell uptake experiments, using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS), illustrated different levels of intracellular accumulation among the ester- and amide-derivatives, with the first being more effectively accumulated, probably due to their extensive hydrolysis inside the cells. In conclusion, these results highlight the hitherto unrecognized fundamental importance of derivatization of diet-derived phenolic acids to unveil their biological potential.
Quercetin (Que) is a flavonoid associated with high oxygen radical scavenging activity and potential neuroprotective activity against Alzheimer's disease. Que's oral bioavailability is limited by its low water solubility and extended peripheral metabolism; thus, nasal administration may be a promising alternative to achieve effective Que concentrations in the brain. The formation of Que−2-hydroxypropylated−β-cyclodextrin (Que/HP-β-CD) complexes was previously found to increase the molecule's solubility and stability in aqueous media. Que−methyl−β-cyclodextrin (Que/Me-β-CD) inclusion complexes were prepared, characterized, and compared with the Que/HP-β-CD complex using biophysical and computational methods (phase solubility, fluorescence and NMR spectroscopy, differential scanning calorimetry (DSC), and molecular dynamics simulations (MDS)) as candidates for the preparation of nose-to-brain Que's delivery systems. DSC thermograms, NMR, fluorescence spectroscopy, and MDS confirmed the inclusion complex formation of Que with both CDs. Differences between the two preparations were observed regarding their thermodynamic stability and inclusion mode governing the details of molecular interactions. Que's solubility in aqueous media at pH 1.2 and 4.5 was similar and linearly increased with both CD concentrations. At pH 6.8, Que's solubility was higher and positively deviated from linearity in the presence of HP-β-CD more than with Me-β-CD, possibly revealing the presence of more than one HP-β-CD molecule involved in the complex. Overall, water solubility of lyophilized Que/Me-β-CD and Que/HP-β-CD products was approximately 7−40 times and 14−50 times as high as for pure Que at pH 1.2−6.8. In addition, the proof of concept experiment on ex vivo permeation across rabbit nasal mucosa revealed measurable and similar Que permeability profiles with both CDs and negligible permeation of pure Que. These results are quite encouraging for further ex vivo and in vivo evaluation toward nasal administration and nose-to-brain delivery of Que.
In recent years, the use of Sideritis species as bioactive agents is increasing exponentially. The present study aimed to investigate the chemical constituents, as well as the anti-ageing potential of the cultivated Sideritis euboea Heldr. The chemical fingerprinting of the ethyl acetate residue of this plant was studied using 1D and 2D-NMR spectra. Isomeric compounds belonging to acylated flavone derivatives and phenylethanoid glycosides were detected in the early stage of the experimental process through 2D-NMR techniques. Overall, thirty-three known compounds were isolated and identified. Some of them are reported for the first time not only in S. euboea, but also in genus Sideritis L. The anti-ageing effect of the ethyl acetate residue and the isolated specialized products was assessed as anti-hyaluronidase activity. In silico docking simulation revealed the interactions of the isolated compounds with hyaluronidase. Furthermore, the in vitro study on the inhibition of hyaluronidase unveiled the potent inhibitory properties of ethyl acetate residue and apigenin 7-O-β-d-glucopyranoside. Though, the isomers of apigenin 7-O-p-coumaroyl-glucosides and also the 4′-methyl-hypolaetin 7-O-[6′′′-O-acetyl-β-d-allopyranosyl]-(1→2)-β-d-glucopyranoside exerted moderate hyaluronidase inhibition. This research represents the first study to report on the anti-hyaluronidase activity of Sideritis species, confirming its anti-inflammatory, cytotoxic and anti-ageing effects and its importance as an agent for cosmetic formulations as also anticancer potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.