Abstract. New particle formation (NPF) events have different patterns of development depending on the conditions of the area in which they occur. In this study, particle size distributions in the range of 16.6–604 nm (7 years of data) were analysed and NPF events occurring at three sites of differing characteristics – rural Harwell (HAR), urban background North Kensington (NK), urban roadside Marylebone Road (MR), London, UK – were extracted and studied. The different atmospheric conditions in each study area not only have an effect on the frequency of the events, but also affect their development. The frequency of NPF events is similar at the rural and urban background locations (about 7 % of days), with a high proportion of events occurring at both sites on the same day (45 %). The frequency of NPF events at the urban roadside site is slightly less (6 % of days), and higher particle growth rates (average 5.5 nm h−1 at MR compared to 3.4 and 4.2 nm h−1 at HAR and NK respectively) must result from rapid gas-to-particle conversion of traffic-generated pollutants. A general pattern is found in which the condensation sink increases with the degree of pollution of the site, but this is counteracted by increased particle growth rates at the more polluted location. A key finding of this study is that the role of the urban environment leads to an increment of 20 % in N16–20 nm in the urban background compared to that of the rural area in NPF events occurring at both sites. The relationship of the origin of incoming air masses is also considered and an association of regional events with cleaner air masses is found. Due to lower availability of condensable species, NPF events that are associated with cleaner atmospheric conditions have lower growth rates of the newly formed particles. The decisive effect of the condensation sink in the development of NPF events and the survivability of the newly formed particles is underlined, and influences the overall contribution of NPF events to the number of ultrafine particles in an area. The other key factor identified by this study is the important role that pollution, both from traffic and other sources in the urban environment (such as heating or cooking), plays in new particle formation events.
Abstract. Although new particle formation (NPF) events have been studied extensively for some decades, the mechanisms that drive their occurrence and development are yet to be fully elucidated. Laboratory studies have done much to elucidate the molecular processes involved in nucleation, but this knowledge has yet to be conclusively linked to NPF events in the atmosphere. There is great difficulty in successful application of the results from laboratory studies to real atmospheric conditions due to the diversity of atmospheric conditions and observations found, as NPF events occur almost everywhere in the world without always following a clearly defined trend of frequency, seasonality, atmospheric conditions, or event development. The present study seeks common features in nucleation events by applying a binned linear regression over an extensive dataset from 16 sites of various types (combined dataset of 85 years from rural and urban backgrounds as well as roadside sites) in Europe. At most sites, a clear positive relation with the frequency of NPF events is found between the solar radiation intensity (up to R2=0.98), temperature (up to R2=0.98), and atmospheric pressure (up to R2=0.97), while relative humidity (RH) presents a negative relation (up to R2=0.95) with NPF event frequency, though exceptions were found among the sites for all the variables studied. Wind speed presents a less consistent relationship, which appears to be heavily affected by local conditions. While some meteorological variables (such as the solar radiation intensity and RH) appear to have a crucial effect on the occurrence and characteristics of NPF events, especially at rural sites, it appears that their role becomes less marked at higher average values. The analysis of chemical composition data presents interesting results. Concentrations of almost all chemical compounds studied (apart from O3) and the condensation sink (CS) have a negative relationship with NPF event frequency, though areas with higher average concentrations of SO2 had higher NPF event frequency. Particulate organic carbon (OC), volatile organic compounds (VOCs), and particulate-phase sulfate consistently had a positive relation with the growth rate of the newly formed particles. As with some meteorological variables, it appears that at increased concentrations of pollutants or the CS, their influence upon NPF frequency is reduced.
<p><strong>Abstract.</strong> NPF events have different patterns of development depending on the conditions of the area in which they occur. In this study, NPF events occurring at three sites of differing characteristics (rural Harwell (HAR), urban background North Kensington (NK), urban roadside Marylebone Road (MR), London, UK) were studied (seven years of data). The different atmospheric conditions in each study area not only have an effect on the frequency of the events, but also affect their development. The frequency of NPF events is similar at the rural and urban background locations (about 7&#8201;% of days), with a high proportion of events occurring at both sites on the same day (45&#8201;%). The frequency of NPF events at the urban roadside site is slightly less (6&#8201;% of days), and higher particle growth rates (average 5.5&#8201;nm&#8201;h<sup>&#8722;1</sup> at MR compared to 3.4&#8201;nm&#8201;h<sup>&#8722;1</sup> and 4.2&#8201;nm&#8201;h<sup>&#8722;1</sup> at HAR and NK respectively) must result from rapid gas to particle conversion of traffic-generated pollutants. A general pattern is found in which the condensation sink increases with the degree of pollution of the site, but this is counteracted by increased particle growth rates at the more polluted location. A key finding of this study is that the role of the urban environment leads to an increment of 20&#8201;% in N<sub>16&#8211;20&#8201;nm</sub> in the urban background compared to that of the rural area in NPF events occurring at both sites. The relationship of the origin of incoming air masses is also considered and an association of regional events with cleaner air masses is found. Due to lower availability of condensable species, NPF events that are associated with cleaner atmospheric conditions have lower growth rates of the newly formed particles. The decisive effect of the condensation sink in the development of NPF events and the survivability of the newly formed particles is underlined, and influences the overall contribution of NPF events to the number of ultrafine particles in an area. The other key factor identified by this study is the important role that urban pollution plays in new particle formation events.</p>
Abstract. Measurement and source apportionment of atmospheric pollutants are crucial for the assessment of air quality and the implementation of policies for their improvement. In most cases, such measurements use expensive regulatory-grade instruments, which makes it difficult to achieve wide spatial coverage. Low-cost sensors may provide a more affordable alternative, but their capability and reliability in separating distinct sources of particles have not been tested extensively yet. The present study examines the ability of a low-cost optical particle counter (OPC) to identify the sources of particles and conditions that affect particle concentrations at an urban background site in Birmingham, UK. To help evaluate the results, the same analysis is performed on data from a regulatory-grade instrument (SMPS, scanning mobility particle sizer) and compared to the outcomes from the OPC analysis. The analysis of the low-cost sensor data manages to separate periods and atmospheric conditions according to the level of pollution at the site. It also successfully identifies a number of sources for the observed particles, which were also identified using the regulatory-grade instruments. The low-cost sensor, due to the particle size range measured (0.35 to 40 µm), performed rather well in differentiating sources of particles with sizes greater than 1 µm, though its ability to distinguish their diurnal variation, as well as to separate sources of smaller particles, at the site was limited. The current level of source identification demonstrated makes the technique useful for background site studies, where larger particles with smaller temporal variations are of significant importance. This study highlights the current capability of low-cost sensors in source identification and differentiation using clustering approaches. Future directions towards particulate matter source apportionment using low-cost OPCs are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.