We describe a rigorous formalism for the calculation of the nonlinear parameter of arbitrary three-dimensional nanophotonic graphene-comprising waveguides. Graphene is naturally implemented as a zero-thickness conductive sheet, modeled solely by complex linear and nonlinear surface conductivity tensors, whose values are extracted from theoretical models. This representation is compared to the more commonly employed equivalent bulk-medium representation and is found superior. We numerically calculate the nonlinear parameters of several optical waveguide archetypes overlaid with infinite graphene monolayers, including silicon-wire and plasmonic metal-slot and metal-stripe configurations. The metal-slot configuration offers the most promising performance for Kerr-type nonlinear applications. Finally, we apply the same formalism to probe the potential of graphene nanoribbon waveguide nonlinearity in the terahertz band.
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative nosocomial pathogens commonly carry one carbapenemase gene conferring resistance to carbapenems and other beta-lactam antibiotics. However, increasing reports show that double-carbapenemase-producing (DCP) and even multi-carbapenemase-producing (MCP) bacteria are emerging in some parts of the world, diminishing further, in some cases, the already limited treatment options. In the present review, the up-to-date reports of DCP and MCP isolates are summarized and concerns regarding their emergence are discussed.
These data indicate that serum IgE and TNF levels correlate with AD severity and that serum cytokines are downregulated in AD1 group. Further studies are clearly needed to elucidate cytokines' role in adults with AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.