Today, conventional condition monitoring of installed, operating photovoltaic (PV) modules is mainly based on electrical measurements and performance evaluation. However, such practices exhibit restricted fault-detection ability. This study proposes the use of standard thermal image processing and the Canny edge detection operator as diagnostic tools for module-related faults that lead to hot-spot heating effects. The intended techniques were applied on thermal images of defective PV modules, from several field infrared thermographic measurements conducted during this study. The whole approach provided promising results with the detection of hot-spot formations that were diagnosed to specific defective cells in each inspected module. These evolving hot spots lead to abnormally low performance of the PV modules, a fact that is also validated by the manufacturer's standard electrical tests.
A typical robot assembly operation involves contacts with the parts of the product to be assembled and consequently requires the knowledge of not only position and orientation trajectories but also the accompanying force-torque profiles for successful performance. To learn the execution of assembly operations even when the geometry of the product varies across task executions, the robot needs to be able to adapt its motion based on a parametric description of the current task condition, which is usually provided by geometrical properties of the parts involved in the assembly. In our previous work we showed how positional control policies can be generalized to different task conditions. In this paper we propose a complete methodology to generalize also the orientational trajectories and the accompanying force-torque profiles to compute the necessary control policy for a given condition of the assembly task. Our method is based on statistical generalization of successfully recorded executions at different task conditions, which are acquired by kinesthetic guiding. The parameters that describe the varying task conditions define queries into the recorded training data. To improve the execution of the skill after generalization, we combine the proposed approach with an adaptation method, thus enabling the refinement of the generalized assembly operation.
This paper presents a new illumination invariant operator, combining the nonlinear characteristics of biological center-surround cells with the classic difference of Gaussians operator. It specifically targets the underexposed image regions, exhibiting increased sensitivity to low contrast, while not affecting performance in the correctly exposed ones. The proposed operator can be used to create a scale-space, which in turn can be a part of a SIFT-based detector module. The main advantage of this illumination invariant scale-space is that, using just one global threshold, keypoints can be detected in both dark and bright image regions. In order to evaluate the degree of illumination invariance that the proposed, as well as other, existing, operators exhibit, a new benchmark dataset is introduced. It features a greater variety of imaging conditions, compared to existing databases, containing real scenes under various degrees and combinations of uniform and non-uniform illumination. Experimental results show that the proposed detector extracts a greater number of features, with a high level of repeatability, compared to other approaches, for both uniform and non-uniform illumination. This, along with its simple implementation, renders the proposed feature detector particularly appropriate for outdoor vision systems, working in environments under uncontrolled illumination conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.