Purpose With this paper, the authors aim to investigate the drivers behind three of the most important aspects of the Chinese real estate market, housing prices, housing rent and new construction. At the same time, the authors perform a comprehensive empirical test of the popular 4-quadrant model by Wheaton and DiPasquale. Design/methodology/approach In this paper, the authors utilize panel cointegration estimation methods and data from 35 Chinese metropolitan areas. Findings The results indicate that the 4-quadrant model is well suited to explain the determinants of housing prices. However, the same is not true regarding housing rent and new construction suggesting a more complex theoretical framework may be required for a well-rounded explanation of real estate markets. Originality/value It is the first time that panel data are used to estimate rent and new construction for China. Also, it is the first time a comprehensive test of the Wheaton and DiPasquale 4-quadrant model is performed using data from China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.