Wildfires have always been a threat to forests and areas of high combustible vegetation. When they are not kept under control, they can spread to residential areas, creating severe damage and destruction. This paper examines the effects of the extreme heat conditions that developed during a wildfire on buildings as a function of their construction type. One of the deadliest wildfires in Greece (July 2018) is considered as a case study, and the damage that occurred to buildings during this event is presented. The temperature of the various structural subsystems in extreme heat conditions was estimated using the finite element method. Parameters that influenced the corresponding temperature distribution were identified. Simple guidelines are given to prevent or reduce damage in buildings exposed to wildfires.
<p>The design and application of strengthening measures aiming to effectively counter possible weaknesses related to the extensive architectural modification of a characteristic reinforced concrete building is discussed in this chapter. Several balconies were removed as part of the architectural interventions. Externally bonded reinforcement consisting of steel and fibre reinforced polymer laminates was applied as an “answer” to possible changes in flexural stress of selected structural elements in the immediate area of the demolitions. A unique anchorage system was also
designed and applied as an answer to the loss of development length of the main reinforcement bars of selected beams due to the removal of their cantilever parts.</p>
Over the past ten years, the development of analytical procedures to accurately evaluate the seismic performance of existing buildings has gathered the attention of researchers. This has resulted in the publication of several standards, which, however, inadequately cover the issue of retrofit strategy selection. In the present article, a procedure that allows a comparison of available strategies in order to select the optimum solution for an existing deficient building is proposed. The procedure is based on calculating the pushover curve for the unstrengthened structure. A capacity spectrum is then estimated assuming different retrofit scenarios, which is then used for the evaluation of the strategies. The latter is based on criteria that assess the main structural system characteristics and how each solution benefits them. The final step of the procedure introduces simplified rules that allow the approximate design of each retrofit solution, which allows the evaluation of their applicability. The proposed procedure was applied to two idealized buildings with different structural systems. Results obtained indicate that less effective or inapplicable rehabilitation strategies were properly detected. Thus, the results were considered acceptable in terms of identifying the possible optimum strategy, which, however, should be verified with a detailed design of the retrofit system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.