This study provides a first line of evidence that pre-determined nanopatterns on clinically relevant, screw-shaped, titanium implants can be recognized by cells in the complex in vivo environment. Until now, most of the knowledge relating to cell interactions with nanopatterned surfaces has been acquired from in vitro studies involving mostly two-dimensional nanopatterned surfaces of varying chemical composition. We have managed to superimpose pre-determined nanoscale topography on polished and micro-rough, screw-shaped, implants, without changes in the microscale topography or chemistry. This was achieved by colloidal lithography in combination with a thin titanium film coating on top of both nanopatterned and control implants. The early events of osseointegration were evaluated at the bone interface to these implants. The results revealed that nanotopography, as such, elicits downregulatory effects on the early recruitment and activity of inflammatory cells while enhancing osteogenic activity and woven bone formation.
Purpose Mechanisms governing the cellular interactions with well-defined nanotopography are not well described in vivo. This is partly due to the difficulty in isolating a particular effect of nanotopography from other surface properties. This study employed colloidal lithography for nanofabrication on titanium implants in combination with an in vivo sampling procedure and different analytical techniques. The aim was to elucidate the effect of well-defined nanotopography on the molecular, cellular, and structural events of osseointegration. Materials and methods Titanium implants were nanopatterned (Nano) with semispherical protrusions using colloidal lithography. Implants, with and without nanotopography, were implanted in rat tibia and retrieved after 3, 6, and 28 days. Retrieved implants were evaluated using quantitative polymerase chain reaction, histology, immunohistochemistry, and energy dispersive X-ray spectroscopy (EDS). Results Surface characterization showed that the nanotopography was well defined in terms of shape (semispherical), size (79±6 nm), and distribution (31±2 particles/µm 2 ). EDS showed similar levels of titanium, oxygen, and carbon for test and control implants, confirming similar chemistry. The molecular analysis of the retrieved implants revealed that the expression levels of the inflammatory cytokine, TNF-α , and the osteoclastic marker, CatK , were reduced in cells adherent to the Nano implants. This was consistent with the observation of less CD163-positive macrophages in the tissue surrounding the Nano implant. Furthermore, periostin immunostaining was frequently detected around the Nano implant, indicating higher osteogenic activity. This was supported by the EDS analysis of the retrieved implants showing higher content of calcium and phosphate on the Nano implants. Conclusion The results show that Nano implants elicit less periimplant macrophage infiltration and downregulate the early expression of inflammatory ( TNF -α) and osteoclastic ( CatK ) genes. Immunostaining and elemental analyses show higher osteogenic activity at the Nano implant. It is concluded that an implant with the present range of well-defined nanocues attenuates the inflammatory response while enhancing mineralization during osseointegration.
Implant surface modification by nanopatterning is an interesting route for enhancing osseointegration in humans. Herein, the molecular response to an intentional, controlled nanotopography pattern superimposed on screw-shaped titanium implants is investigated in human bone. When clinical implants are installed, additional two mini-implants, one with a machined surface (M) and one with a machined surface superimposed with a hemispherical nanopattern (MN), are installed in the posterior maxilla. In the second-stage surgery, after 6–8 weeks, the mini-implants are retrieved by unscrewing, and the implant-adherent cells are subjected to gene expression analysis using quantitative polymerase chain reaction (qPCR). Compared to those adherent to the machined (M) implants, the cells adherent to the nanopatterned (MN) implants demonstrate significant upregulation (1.8- to 2-fold) of bone-related genes (RUNX2, ALP, and OC). No significant differences are observed in the expression of the analyzed inflammatory and remodeling genes. Correlation analysis reveals that older patient age is associated with increased expression of proinflammatory cytokines (TNF-α and MCP-1) on the machined implants and decreased expression of pro-osteogenic factor (BMP-2) on the nanopatterned implants. Controlled nanotopography, in the form of hemispherical 60 nm protrusions, promotes gene expressions related to early osteogenic differentiation and osteoblastic activity in implant-adherent cells in the human jaw bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.