As the number and size of large timestamped collections (e.g. sequences of digitized newspapers, periodicals, blogs) increase, the problem of efficiently indexing and searching such data becomes more important. Term burstiness has been extensively researched as a mechanism to address event detection in the context of such collections. In this paper, we explore how burstiness information can be further utilized to enhance the search process. We present a novel approach to model the burstiness of a term, using discrepancy theory concepts. This allows us to build a parameter-free, lineartime approach to identify the time intervals of maximum burstiness for a given term. Finally, we describe the first burstiness-driven search framework and thoroughly evaluate our approach in the context of different scenarios.
A large number of mainstream applications, like temporal search, event detection, and trend identification, assume knowledge of the timestamp of every document in a given textual collection. In many cases, however, the required timestamps are either unavailable or ambiguous. A characteristic instance of this problem emerges in the context of large repositories of old digitized documents. For such documents, the timestamp may be corrupted during the digitization process, or may simply be unavailable. In this paper, we study the task of approximating the timestamp of a document, so-called document dating. We propose a contentbased method and use recent advances in the domain of term burstiness, which allow it to overcome the drawbacks of previous document dating methods, e.g. the fix time partition strategy. We use an extensive experimental evaluation on different datasets to validate the efficacy and advantages of our methodology, showing that our method outperforms the state of the art methods on document dating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.