Synthetic oligopeptides comprising linear or continuous topographic B-cell epitope sequences of proteins might be considered as specific and small size antigens. It has been demonstrated that the strength and specificity of antibody binding could be altered by conjugation to macromolecules or by modification in the flanking regions. However, no systematic studies have been reported to describe the effect of different carrier macromolecules in epitope conjugates. To this end, the influence of carrier structure and topology on antibody recognition of attached epitope has been studied by comparing the antibody binding properties of a new set of conjugates with tetratuftsin analogue (H-[Thr-Lys-Pro-Lys-Gly](4)-NH(2), T20) sequential oligopeptide carrier (SOC(n)), branched chain polypeptide, poly[Lys(Ser(i)-DL-Ala(m))] (SAK), multiple antigenic peptide (MAP), and keyhole limpet hemocyanine (KLH). In these novel constructs, peptide (9)LKNleADPNRFRGKDL(22) ([Nle(11)]-9-22) representing an immunodominant B cell epitope of herpes simplex virus type 1 glycoprotein D (HSV-1 gD) was conjugated to polypeptides through a thioether or amide bond. Here we report on the preparation of sequential and polymeric polypeptides possessing chloroacetyl groups in multiple copies at the alpha- and/or epsilon-amino group of the polypeptides and its use for the conjugation of epitope peptides possessing Cys at C-terminal position. We have performed binding studies (direct and competitive ELISA) with monoclonal antibody (Mab) A16, recognizing the HSV gD-related epitope, [Nle(11)]-9-22, and conjugates containing identical and uniformly oriented epitope peptide in multiple copies attached to five different macromolecules as carrier. Data suggest that the chemical nature of the carrier and the degree of substitution have marked influence on the strength of antibody binding.
The rational design of artificial carriers for anchoring multiple copies of B and/or T cell epitopes, built-in vaccine adjuvants and "promiscuous" T cell epitopes for the construction of conjugates as antigenic substrates or potent immunogens has been the stimulus of intensive efforts nowadays. The unambiguous composition, the reliability and the versatility of the production of reconstituted antigens or immunogens has found a great number of biochemical applications in developing immunoassays of high sensitivity, specificity and reproducibility and in generating site-specific antibodies for usage as human vaccine candidates. In this review are summarized different types of artificial carriers currently used as dendrimers bearing branching segments, multimeric core matrices and templates with built-in folding devices. Emphasis is given to the construction and application of a helicoid-type Sequential Oligopeptide Carrier (SOCn) developed in our laboratory. The beneficial structural elements of SOCn induce a favorable arrangement of the conjugated peptides, which also retain their initial "active" conformation, so that potent antigens and immunogens are generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.