Landsat can be used to map tropical forest cover at 15–60 m resolution, which is helpful for detecting small but important perturbations in increasingly fragmented forests. However, among the remaining Landsat satellites, Landsat-5 no longer has global coverage and, since 2003, a mechanical fault in the Scan-Line Corrector (SLC-Off) of the Landsat-7 satellite resulted in a 22–25% data loss in each image. Such issues challenge the use of Landsat for wall-to-wall mapping of tropical forests, and encourage the use of alternative, spatially coarser imagery such as MODIS. Here, we describe and test an alternative method of post-classification compositing of Landsat images for mapping over 20.5 million hectares of peat swamp forest in the biodiversity hotspot of Sundaland. In order to reduce missing data to levels comparable to those prior to the SLC-Off error, we found that, for a combination of Landsat-5 images and SLC-off Landsat-7 images used to create a 2005 composite, 86% of the 58 scenes required one or two images, while 14% required three or more images. For a 2010 composite made using only SLC-Off Landsat-7 images, 64% of the scenes required one or two images and 36% required four or more images. Missing-data levels due to cloud cover and shadows in the pre SLC-Off composites (7.8% and 10.3% for 1990 and 2000 enhanced GeoCover mosaics) are comparable to the post SLC-Off composites (8.2% and 8.3% in the 2005 and 2010 composites). The area-weighted producer’s accuracy for our 2000, 2005 and 2010 composites were 77%, 85% and 86% respectively. Overall, these results show that missing-data levels, classification accuracy, and geographic coverage of Landsat composites are comparable across a 20-year period despite the SLC-Off error since 2003. Correspondingly, Landsat still provides an appreciable utility for monitoring tropical forests, particularly in Sundaland’s rapidly disappearing peat swamp forests
We present an adapted woody biomass retrieval approach for tropical savanna areas appropriate for use with satellite acquired L-band SAR imagery. We use the semiempirical water cloud model to describe the interaction between the SAR signal and vegetation and re-arrange the model to predict biomass. Estimations are made using dual polarization SAR imagery collected by ALOS PALSAR during 2008 in combination with community woodland inventory data from pine savanna areas in Belize. Estimation accuracy is assessed internally by the fit of the model to the ground training data, and then validated against an independent external dataset, quality controlled using Worldview II imagery. The internal validation shows a biomass estimation with an RMSE of 25 t/ha and a coefficient of determination R2 of 0.70, while the external validation indicates an RMSE of 13 t/ha with R2 of 0.53. This approach to biomass estimation appears to be most influenced by the plots with higher tree numbers and where the trees were more homogeneous. The existence of many similar sized individuals in those plots influence the SAR backscatter and is predicted to be the cause the elevated level of saturation found in this study (>100t/ha) with complete saturation predicted as a result of number density increases, and concurrently increasing basal area, both not exclusively dependent on biomass
Lowland savannas, covering an area of 2,342 km 2 , form the third largest ecosystem in Belize yet are unevenly and therefore poorly represented in the country's protected area system. Based on more than 5,700 herbarium collections, a checklist of 957 species of vascular plants is presented for this ecosystem representing ca. 28% of the Belizean flora, of which 54 species are new records for the country. Of the 41 species of plants known to be endemic to Belize, 18 have been recorded within the lowland savanna, and nine species are listed in The World Conservation Union (IUCN) 2010 Red List of Threatened Species. Of the total savanna ecosystem flora, 339 species are characteristic of the open savanna, whilst 309 and 114 species are more frequent in forest and wetland areas respectively. Most species (505, 53% of the lowland savanna flora) are herbaceous. Although the lowland savanna has been relatively well collected, there are geographical biases in botanical sampling which have focused historically on the savannas in the centre and the north of the country. A brief review of the collecting history of the lowland savanna is provided, and recommendations are given on how future collecting efforts may best be focused. The lowland savanna is shown to be a significant regional centre of plant diversity.
Fine-scale biomass maps offer forest managers the prospect of more detailed and locally accurate information for measuring, reporting and verification activities in contexts, such as sustainable forest management, carbon stock assessments and ecological studies of forest growth and change. In this study, we apply a locally validated method for estimating aboveground woody biomass (AGWB) from Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR) data to produce an AGWB map for the lowland pine savannas of Belize at a spatial resolution of 100 m. Over 90% of these woodlands are predicted to have an AGWB below 60 tha −1 , with the average woody biomass of these savannas estimated at 23.5 tha −1 . By overlaying these spatial estimates upon previous thematic mapping of national land cover, we derive representative average biomass values of ~32 tha −1 and ~18 tha −1 for the previously qualitative classes of "denser" and "less dense" tree savannas. The predicted average biomass, from the mapping for savannas woodlands occurring within two of Belize's larger protected areas, agree closely with previous biomass estimates for these areas based on ground surveys and forest inventories (error ≤20%). However, biomass estimates derived for these protected areas from two biomass maps produced at coarser resolutions (500 m and 1000 m) from global datasets overestimated biomass (errors ≥275% in each dataset). OPEN ACCESSForests 2014, 5 2378The finer scale biomass mapping of both protected and unprotected areas provides evidence to suggest that protection has a positive effect upon woody biomass, with the mean AGWB higher in areas protected and managed for biodiversity (protected and passively managed (PRPM), 29.5 tha −1 ) compared to unprotected areas (UPR, 23.29 tha −1 ).These findings suggest that where sufficient ground data exists to build a reliable local relationship to radar backscatter, the more detailed biomass mapping that can be produced from ALOS and similar satellite data at resolutions of ~100 m provides more accurate and spatially detailed information that is more appropriate for supporting the management of forested areas of ~10,000 ha than biomass maps that can be produced from lower resolution, but freely available global data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.