The primary visual cortex (V1) integrates information over scales in visual space, which have been shown to vary, in an input-dependent manner, as a function of contrast and other visual parameters. Which algorithms the brain uses to achieve this feat are largely unknown and an open problem in visual neuroscience. We demonstrate that a simple dynamical mechanism can account for this contrast-dependent scale of integration in visuotopic space as well as connect this property to two other stimulus-dependent features of V1: extents of lateral integration on the cortical surface and response latencies.
The bulk of studies of coupled oscillators use, as is appropriate in Physics, a global coupling constant controlling all individual interactions. However, because as the coupling is increased, the number of relevant degrees of freedom also increases, this setting conflates the strength of the coupling with the effective dimensionality of the resulting dynamics. We propose a coupling more appropriate to neural circuitry, where synaptic strengths are under biological, activity-dependent control and where the coupling strength and the dimensionality can be controlled separately. Here we study a set of N → ∞ strongly-and nonsymmetricallycoupled, dissipative, powered, rotational dynamical systems, and derive the equations of motion of the reduced system for dimensions 2 and 4. Our setting highlights the statistical structure of the eigenvectors of the connectivity matrix as the fundamental determinant of collective behavior, inheriting from this structure symmetries and singularities absent from the original microscopic dynamics.
We present a new approach to population health where data-driven predictive models are learned for various stigmatized, underserved, and neglected chronic conditions that affect women. Our approach enables early detection within large populations at low cost from readily available medical claims datasets. The model uncovers early and late stage risk factors up to two years in advance of onset that can be used as guides for early interventions for endometriosis, polycystic ovarian syndrome, and infertility, allowing women suffering from these conditions to get on treatment plans earlier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.