We propose a two-scale finite element method for the Monge-Ampère equation with Dirichlet boundary condition in dimension d ≥ 2 and prove that it converges to the viscosity solution uniformly. The method is inspired by a finite difference method of Froese and Oberman, but is defined on unstructured grids and relies on two separate scales: the first one is the mesh size h and the second one is a larger scale that controls appropriate directions and substitutes the need of a wide stencil. The main tools for the analysis are a discrete comparison principle and discrete barrier functions that control the behavior of the discrete solution, which is continuous piecewise linear, both close to the boundary and in the interior of the domain.
We propose a new discontinuous Galerkin (dG) method for a geometrically nonlinear Kirchhoff plate model for large isometric bending deformations. The minimization problem is nonconvex due to the isometry constraint. We present a practical discrete gradient flow that decreases the energy and computes discrete minimizers that satisfy a prescribed discrete isometry defect. We prove Γ-convergence of the discrete energies and discrete global minimizers. We document the flexibility and accuracy of the dG method with several numerical experiments.
We propose a new discontinuous Galerkin (dG) method for a geometrically nonlinear Kirchhoff plate model for large isometric bending deformations. The minimization problem is nonconvex due to the isometry constraint. We present a practical discrete gradient flow that decreases the energy and computes discrete minimizers that satisfy a prescribed discrete isometry defect. We prove [Formula: see text]-convergence of the discrete energies and discrete global minimizers. We document the flexibility and accuracy of the dG method with several numerical experiments.
In this paper we continue the analysis of the two-scale method for the Monge-Ampère equation for dimension d ≥ 2 introduced in [12]. We prove continuous dependence of discrete solutions on data that in turn hinges on a discrete version of the Alexandroff estimate. They are both instrumental to prove pointwise error estimates for classical solutions with Hölder and Sobolev regularity. We also derive convergence rates for viscosity solutions with bounded Hessians which may be piecewise smooth or degenerate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.