Forecasting of commercial building thermal loads can be achieved using data from Building Energy Management (BEM) systems. Experience in building load prediction using historical data has shown that data analysis is a key factor in order to produce accurate results. This paper examines the selection of appropriate input variables, for data-driven predictive models, from wider datasets obtained from BEM systems sensors, as well as from weather data. To address the lack of available complete datasets from actual commercial buildings BEM systems, detailed representation of reference buildings using EnergyPlus were implemented. Different types of commercial buildings in various climates are examined to investigate the existence of patterns in the selection of input variables. Data analysis of the simulated results is used to detect the correlation between thermal loads and possible input variables. The selection process is validated by comparing the performance of predictive models when the full or the pre-selected set of variables is introduced as inputs.
Commercial buildings incorporate Building Energy Management Systems (BEMS) to monitor indoor environment conditions as well as controlling Heating Ventilation and Air Conditioning (HVAC) systems. Measurements of temperature, humidity and energy consumption are typically stored within BEMS. These measurements include underlying information regarding building thermal response, which is crucial for the calculation of heating and cooling loads. Forecasting of building thermal loads can be achieved using data records from BEMS. Accurate predictions can be produced when introducing these data records to datamining predictive models. Incomplete datasets are often acquired when extracting data from the BEMS; hence detailed representations of commercial buildings can be implemented using EnergyPlus. For the purposes of the research described in this paper, different types of commercial buildings in various climates are examined to investigate the scalability of the predictive models.
This paper focuses on the ability of machine learning algorithms to capture the demand response (DR) potential when forecasting the electrical demand of a commercial building. An actual sports-entertainment centre is utilised as a testbed, simulated with Energy-Plus, and the strategy followed during the DR event is the modification of the chiller water temperature of the cooling system. An artificial neural network (ANN) and a support vector machine (SVM) predictive model, are utilised to predict the DR potential of the building, due to the significant amount of execution time of the EnergyPlus model. The data-driven models are trained and tested based on synthetic databases. Results demonstrate that both ANN and SVM models can accurately predict the building electrical power demand for the scenarios without or with daily DR events, whereas both predictive models are not accurate in forecasting the electrical demand during the rebound effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.