The integration of IoT and deep learning provides the opportunity for continuous monitoring and evaluation of patients’ health status, leading to more personalized treatment and improved quality of life. This study explores the potential of deep learning to predict episodes of freezing of gait (FoG) in Parkinson’s disease (PD) patients. Initially, a literature review was conducted to determine the state of the art; then, two inception-based models, namely LN-Inception and InSEption, were introduced and tested using the Daphnet dataset and an additional novel medium-sized dataset collected from an IMU (inertial measuring unit) sensor. The results show that both models performed very well, outperforming or achieving performance comparable to the state-of-the-art. In particular, the InSEption network showed exceptional performance, achieving a 6% increase in macro F1 score compared to the inception-only-based counterpart on the Daphnet dataset. In a newly introduced IMU dataset, InSEption scored 97.2% and 98.6% in terms of F1 and AUC, respectively. This can be attributed to the added squeeze and excitation blocks and the domain-specific oversampling methods used for training. The benefits of using the Inception mechanism for signal data and its potential for integration into wearable IoT are validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.