Dysregulation of signaling pathways in multiple sclerosis (MS) can be analyzed by phosphoproteomics in peripheral blood mononuclear cells (PBMCs). We performed in vitro kinetic assays on PBMCs in 195 MS patients and 60 matched controls and quantified the phosphorylation of 17 kinases using xMAP assays. Phosphoprotein levels were tested for association with genetic susceptibility by typing 112 single-nucleotide polymorphisms (SNPs) associated with MS susceptibility. We found increased phosphorylation of MP2K1 in MS patients relative to the controls. Moreover, we identified one SNP located in the PHDGH gene and another on IRF8 gene that were associated with MP2K1 phosphorylation levels, providing a first clue on how this MS risk gene may act. The analyses in patients treated with disease-modifying drugs identified the phosphorylation of each receptor’s downstream kinases. Finally, using flow cytometry, we detected in MS patients increased STAT1, STAT3, TF65, and HSPB1 phosphorylation in CD19+ cells. These findings indicate the activation of cell survival and proliferation (MAPK), and proinflammatory (STAT) pathways in the immune cells of MS patients, primarily in B cells. The changes in the activation of these kinases suggest that these pathways may represent therapeutic targets for modulation by kinase inhibitors.
The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to ‘translate’ the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies.
BackgroundSignalling pathways are the cornerstone on understanding cell function and predicting cell behavior. Recently, logical models of canonical pathways have been optimised with high-throughput phosphoproteomic data to construct cell-type specific pathways. However, less is known on how signalling pathways can be linked to a cellular response such as cell growth, death, cytokine secretion, or transcriptional activity.ResultsIn this work, we measure the signalling activity (phosphorylation levels) and phenotypic behavior (cytokine secretion) of normal and cancer hepatocytes treated with a combination of cytokines and inhibitors. Using the two datasets, we construct "extended" pathways that integrate intracellular activity with cellular responses using a hybrid logical/data-driven computational approach. Boolean logic is used whenever a priori knowledge is accessible (i.e., construction of canonical pathways), whereas a data-driven approach is used for linking cellular behavior to signalling activity via non-canonical edges. The extended pathway is subsequently optimised to fit signalling and behavioural data using an Integer Linear Programming formulation. As a result, we are able to construct maps of primary and transformed hepatocytes downstream of 7 receptors that are capable of explaining the secretion of 22 cytokines.ConclusionsWe developed a method for constructing extended pathways that start at the receptor level and via a complex intracellular signalling pathway identify those mechanisms that drive cellular behaviour. Our results constitute a proof-of-principle for construction of "extended pathways" that are capable of linking pathway activity to diverse responses such as growth, death, differentiation, gene expression, or cytokine secretion.
The pathogenesis of multiple sclerosis (MS) involves alterations to multiple pathways and processes, which represent a significant challenge for developing more-effective therapies. Systems biology approaches that study pathway dysregulation should offer benefits by integrating molecular networks and dynamic models with current biological knowledge for understanding disease heterogeneity and response to therapy. In MS, abnormalities have been identified in several cytokine-signaling pathways, as well as those of other immune receptors. Among the downstream molecules implicated are Jak/Stat, NF-Kb, ERK1/3, p38 or Jun/Fos. Together, these data suggest that MS is likely to be associated with abnormalities in apoptosis/cell death, microglia activation, blood-brain barrier functioning, immune responses, cytokine production, and/or oxidative stress, although which pathways contribute to the cascade of damage and can be modulated remains an open question. While current MS drugs target some of these pathways, others remain untouched. Here, we propose a pragmatic systems analysis approach that involves the large-scale extraction of processes and pathways relevant to MS. These data serve as a scaffold on which computational modeling can be performed to identify disease subgroups based on the contribution of different processes. Such an analysis, targeting these relevant MS-signaling pathways, offers the opportunity to accelerate the development of novel individual or combination therapies. AbstractThe pathogenesis of MS involves alterations to multiple pathways and processes, which represent a significant challenge for developing more effective therapies. Systems biology approaches that study pathway dysregulation will offer benefits by integrating in molecular networks and dynamic models with current biological knowledge for understanding disease heterogeneity and response to therapy. In MS, abnormalities have been identified in several cytokine signaling pathways, as well as those of other immune receptors. Among the downstream molecules implicated are Jak/Stat, NFKb, ERK1/3, p38 or Jun/Fos. Together, these data suggest that MS is likely to be associated with abnormalities in apoptosis / cell death, microglia activation, blood-brain barrier functioning, immune responses, cytokine production, and/or oxidative stress. While current MS drugs target some of these pathways, others remain untouched. Here, we propose a pragmatic systems analysis approach that involves the large-scale extraction of processes and pathways relevant to MS. This data serves as a scaffold upon which computational modeling can be performed to identify disease subgroups based in the contribution of different processes. Such an analysis, targeting these relevant MS signaling pathways, offers the opportunity to accelerate the development of novel individual or combination therapies.
The analysis presented herein, leveraged high throughput proteomic data via an ILP formulation to gain new insight into chondrocytes signaling and the pathophysiology of degenerative diseases in articular cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.