Background
Renewable energy has become a field of high interest over the past decade, and production of biofuels from cellulosic substrates has a particularly high potential as an alternative source of energy. Industrial deconstruction of biomass, however, is an onerous, exothermic process, the cost of which could be decreased significantly by use of hyperthermophilic enzymes. An efficient way of breaking down cellulosic substrates can also be achieved by highly efficient enzymatic complexes called cellulosomes. The modular architecture of these multi-enzyme complexes results in substrate targeting and proximity-based synergy among the resident enzymes. However, cellulosomes have not been observed in hyperthermophilic bacteria.
Results
Here, we report the design and function of a novel hyperthermostable “designer cellulosome” system, which is stable and active at 75 °C. Enzymes from
Caldicellulosiruptor bescii
, a highly cellulolytic hyperthermophilic anaerobic bacterium, were selected and successfully converted to the cellulosomal mode by grafting onto them divergent dockerin modules that can be inserted in a precise manner into a thermostable chimaeric scaffoldin by virtue of their matching cohesins. Three pairs of cohesins and dockerins, selected from thermophilic microbes, were examined for their stability at extreme temperatures and were determined stable at 75 °C for at least 72 h. The resultant hyperthermostable cellulosome complex exhibited the highest levels of enzymatic activity on microcrystalline cellulose at 75 °C, compared to those of previously reported designer cellulosome systems and the native cellulosome from
Clostridium thermocellum
.
Conclusion
The functional hyperthermophilic platform fulfills the appropriate physico-chemical properties required for exothermic processes. This system can thus be adapted for other types of thermostable enzyme systems and could serve as a basis for a variety of cellulolytic and non-cellulolytic industrial objectives at high temperatures.
Electronic supplementary material
The online version of this article (10.1186/s13068-019-1386-y) contains supplementary material, which is available to authorized users.
BackgroundThe concerted action of three complementary cellulases from Clostridium thermocellum, engineered to be stable at elevated temperatures, was examined on a cellulosic substrate and compared to that of the wild-type enzymes. Exoglucanase Cel48S and endoglucanase Cel8A, both key elements of the natural cellulosome from this bacterium, were engineered previously for increased thermostability, either by SCHEMA, a structure-guided, site-directed protein recombination method, or by consensus-guided mutagenesis combined with random mutagenesis using error-prone PCR, respectively. A thermostable β-glucosidase BglA mutant was also selected from a library generated by error-prone PCR that will assist the two cellulases in their methodic deconstruction of crystalline cellulose. The effects of a thermostable scaffoldin versus those of a largely mesophilic scaffoldin were also examined. By improving the stability of the enzyme subunits and the structural component, we aimed to improve cellulosome-mediated deconstruction of cellulosic substrates.ResultsThe results demonstrate that the combination of thermostable enzymes as free enzymes and a thermostable scaffoldin was more active on the cellulosic substrate than the wild-type enzymes. Significantly, “thermostable” designer cellulosomes exhibited a 1.7-fold enhancement in cellulose degradation compared to the action of conventional designer cellulosomes that contain the respective wild-type enzymes. For designer cellulosome formats, the use of the thermostabilized scaffoldin proved critical for enhanced enzymatic performance under conditions of high temperatures.ConclusionsSimple improvement in the activity of a given enzyme does not guarantee its suitability for use in an enzyme cocktail or as a designer cellulosome component. The true merit of improvement resides in its ultimate contribution to synergistic action, which can only be determined experimentally. The relevance of the mutated thermostable enzymes employed in this study as components in multienzyme systems has thus been confirmed using designer cellulosome technology. Enzyme integration via a thermostable scaffoldin is critical to the ultimate stability of the complex at higher temperatures. Engineering of thermostable cellulases and additional lignocellulosic enzymes may prove a determinant parameter for development of state-of-the-art designer cellulosomes for their employment in the conversion of cellulosic biomass to soluble sugars.Graphical abstractConversion of conventional designer cellulosomes into thermophilic designer cellulosomesElectronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0577-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.