This paper considers the damped small-amplitude free-vibration of composite laminated strips subject to large in-plane forces and rotations. A theoretical framework is formulated for the prediction of the nonlinear damping of composite laminates subject to large Green-Lagrange axial strains and assuming a Kelvin viscoelastic solid. An extended beam finite element is developed capable of providing the nonlinear stiffness and damping matrices of the system. The linearized damped free-vibration equations associated with the deflected strip shape in the pre-and postbuckling region are presented. Numerical results quantify the strong geometric nonlinear effect of compressive in-plane loads on the modal damping and frequencies of composite strips. Measurements of the modal damping of a cross-ply glass/epoxy beam subject to buckling were also conducted and correlate well with the finite element predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.