In this paper, we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints, we draw on ideas from the dynamic model averaging literature which achieve reductions in the computational burden through the use forgetting factors. We then extend the TVP-VAR so that its dimension can change over time. For instance, we can have a large TVP-VAR as the forecasting model at some points in time, but a smaller TVP-VAR at others. A final extension lies in the development of a new method for estimating, in a timevarying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs.These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output and interest rates demonstrates the feasibility and usefulness of our approach.
We forecast quarterly US in ‡ation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We …nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.
Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as timevarying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus, over-parameterization problems may arise. Bayesian methods have become increasingly popular as a way of overcoming these problems. In this monograph, we discuss VARs, factor augmented VARs and time-varying parameter extensions and show how Bayesian inference proceeds. Apart from the simplest of VARs, Bayesian inference requires the use of Markov chain Monte Carlo methods developed for state space models and we describe these algorithms. The focus is on the empirical macroeconomist and we o¤er advice on how to use these models and methods in practice and include empirical illustrations. A website provides Matlab code for carrying out Bayesian inference in these models.
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods that incorporate dynamic model averaging. These methods not only allow for coefficients to change over time, but also allow for the entire forecasting model to change over time. We find that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coefficient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.